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Recently, it has been shown that when an equation that allows the so-called pulled fronts in the mean-field
limit is modeled with a stochastic model with a finite numbérof particles per correlation volume, the
convergence to the speed for N—x is extremely slow—going only as T8N. Pulled fronts are fronts that
propagate into an unstable state, and the asymptotic front speed is equal to the linear spreading speed
small linear perturbations about the unstable state. In this paper, we study the front propagation in a simple
stochastic lattice model. A detailed analysis of the microscopic picture of the front dynamics shows that for the
description of the far tip of the front, one has to abandon the idea of a uniformly translating front solution. The
lattice and finite particle effects lead to a “stop-and-go” type dynamics at the far tip of the front, while the
average front behind it “crosses over” to a uniformly translating solution. In this formulation, the effect of
stochasticity on the asymptotic front speed is coded in the probability distribution of the times required for the
advancement of the “foremost bin.” We derive expressions of these probability distributions by matching the
solution of the far tip with the uniformly translating solution behind. This matching includes various correla-
tion effects in a mean-field type approximation. Our results for the probability distributions compare well to the
results of stochastic numerical simulations. This approach also allows us to deal with much smaller values of
N than it is required to have the 1AN asymptotics to be valid. Furthermore, we show that if one insists on
using a uniformly translating solution for the entire front ignoring its breakdown at the far tip, then one can
obtain a simple expression for the corrections to the front speed for finite valuls iaf which various
subdominant contributions have a clear physical interpretation.
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I. INTRODUCTION structures. For fronts, the first questions to study are there-
fore properties such as existence and speed of propagation of
. . o the front solutions of the deterministic equations, which in

In pattern forming systems, quite often, situations occuimest cases are partial differential equations. In the last de-
where patches of different bulk phases occur which are sepgades, the fundamental propagation mechanism of such de-
rated by fronts or interfaces. In such cases, the relevant dyerministic fronts has become relatively well understood.
namics is usually dominated by the dynamics of these fronts. From the above perspective, it is may be less of a surprise
When the interface separates two thermodynamically stablghat the detailed questions concerning the stochastic proper-
phases, as in crystal-melt interfacial growth problems, theies of inherently nonequilibrium fronts have been addressed,
width of the interfacial zone is usually of atomic dimensions.to some extent, only relatively recentlg—13], and that it
For such systems, one often has to resort to a moving boundtas taken a while for researchers to become fully aware of
ary description in which the boundary conditions at the in-the fact that the so-called pulled froritst—17 which propa-
terface are determined phenomenologically or by micro-gate into an unstable state, dot fit into the common mold:
scopic considerations. A question that naturally arises fothey have anomalous sensitivity to particle effef@s-11],
such interfaces is the influence of stochastic fluctuations oand have been argued to display uncommon scaling behavior
the motion and scaling properties of such interfaces. [13,18-20.

At the other extreme is a class of fronts that arise in sys- Pulled frontsare fronts which propagate into an unstable
tems that form patterns, and in which the occurrence oftate, and whose propagation dynamics is essentially that
fronts or transition zones is fundamentally related to theitthey are being “pulled along” by the growth and spreading
nonequilibrium nature, as they do not connect two thermoof the small perturbations about the unstable state into which
dynamic equilibrium phases which are separated by a firghe front propagates—their asymptotic spegdis equal to
order phase transition. In such cases—for example, chemic#ie linear spreading speed of perturbations about the un-
fronts [1], the temperature and density transition zones irstable statey ,s=v* [14—17. This contrasts with thpushed
thermal plumeg$2], the domain walls separating domains of fronts for which v,s>v*, and whose dynamics is deter-
different orientation in in rotating Rayleigh-Bard convec- mined by the nonlinearities in the dynamical equatipts—
tion [3], or streamer fronts in discharge$l—the fronts are  17]. The behavior of pushed fronts is essentially similar to
relatively wide and therefore described by the same confronts between tw@metgstable states.
tinuum equations that describe nonequilibrium bulk patterns. The concept of a pulled front most naturally fits a formu-
The lore in nonequilibrium pattern formation is that when thelation of the dynamical equations in termsamintinuum vari-
relevant length scales are larddjerma) fluctuation effects ables for by “small perturbations” we mean that the devia-
are relatively small[5]. For this reason, the dynamics of tions of the field values from the values in the unstable state
many pattern forming systems can be understood in terms @fre small enough that nonlinear terms in the deviations can
the deterministic dynamics of the basic patterns and coherefe neglected. From various directions, it has become clear in

A. Fronts and fluctuation effects
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the last few years that such pulled fronts do show very unfithmic term, in the dominant order, it does not matter
usual behavior and response to perturbations. First of allhether the actual cutoff should really be exactlil 1tor-
Brunet and Derrida have shown that when the continuummesponding to exactly one parti¢gl@r whether the growth is
field equations are used for a finite particle model so as tqust suppressed at values ¢fof order 1N, since 1/I3(cN)
have a growth cutoff at the field valueN/ whereN is the  ~1/In?N in dominant order. Simulations of two different lat-
typical number of particles in the bulk phase behind thetice models by Brunet and Derrid@] and by van Zoret al.
front, the deviation from the continuum valué& of the front  [26] gave strong support for the essential correctness of this
speed is often large, and it vanishes only as?Nltwith a  procedure for sufficiently larghl, but showed that there can
known prefactor which they calculate@®]. On the other be significant deviations from the asymptotic result for large
hand, we recently found that with an infinitesimal growth but not extremely largé\. Moreover, for a different lattice
cutoff and a similarly infinitesimal growtenhancemene-  model, Kessleret al. [10] did observe a correction to the
hind it, one can have a much higher front speed #afi21].  average front speed of order M but with a prefactor
Furthermore, the scaling properties of pulled fronts in sto-which they claimed was a factor of order two different from
chastic field equations with a particular type of multiplicative the prediction of Brunet and Derrida.
noise have been found to be anomalous: in one dimension, There are hence several questions that lead us to recon-
they are predicted to exhibit subdiffusive wanderja§], but  sider the finite particle effects on the average front speed of
in higher dimensions their scaling behavior is given by thepulled stochastic fronts.
KPZ equation22] in one dimension higher than one would (i) Why is it that a simple cutoff of order i/ in a deter-
naively expect[19,20 (the question to what extent these ministic equation for a continuum (mean-field type) equation
results are applicable to lattice models, where the finite parapparently leads to the proper asymptotic correction to the
ticle effects always make the fronts weakly pushed, is still aaverage speed of stochasticfront?
matter of debat¢23,24]). Moreover, even without fluctua- (ii) Can we get a more microscopic picture of the stochas-
tions, pulled fronts respond differently to coupling to othertic behavior at the far end of the front, where there are only
fields, e.g., they never reduce to standard moving boundarg few particles per lattice site?
problems, even if they are th{i25]. (i) Can we go beyond the largé asymptotic result of

All these effects have one origin in common, namely, theBrunet and Derrida, e.g., can we calculate the correction
fact that the dynamics of pulled fronts, by its very nature, isterm for large but not extremely large values\bbr even for
not determined by the nonlinear front region itself, but by thearbitrary N? After all, one mighta priori expect correlation
regionat the leading edge of the fragnwhere deviations from effects to be very important for fronts whose propagation
the unstable state are small. To a large degree, this senmgpeed is strongly affected by the region where there are only
infinite region alone determines the universal relaxation ofa few particles per site.
the speed of a deterministic pulled front to its asymptotic (iv) What is the role of correlation effects?
value[9,16,17, as well as the anomalous scaling behavior of  (v) To what extent do the specific details of the particular
stochastic front§18-20,23,24in continuum equations with  stochastic model play a role?
multiplicative noise. As realized by Brunet and Derri@g, (vi) Can one resolve the discrepancy noted by Kessler
the crucial importance of the region, where the deviationst al.[10]?
from the unstable state are small, also implies that if one
builds a lattice model version of a front propagating into an C. Summary of the main results
unstable state, the front speed is surprisingly sensitive to the
dynamics of the tigthe far endl of the front where only one
or a few particles per lattice site are present. It is this effec
which is the main subject of this paper.

In this paper, we address these questions and answer the
ajority of them for a specific model for which Breugfral.
6] already studied the asymptotic speeds of stochastic fronts
numerically some years ago. The model consists of particles
making diffusive hops on a one-dimensional lattice, and be-
ing subject to growth and death on each lattice site. It is very
If we study fronts for a field describing the number den-close to the one also studied by Kess¢ml.[10], the only
sity ¢ of particles, and normalize the field in such a way thatdifference being that their model includes a correlation term,
its average value behind the front, where thereNaparticles  which is small and irrelevant for largd. The absence of
per unit of length, is 1, then at the very far end of the leadingsuch correlations makes the model studied by Breex.
edge, where the discrete particle nature of the actual modelasier to analyze. Moreover, an examination of the numerical
becomes most noticeable, the value of the normalized nunresults therein shows that the deviation of the asymptotic
ber density field is of order IW. Brunet and Derridgd9] front speed from its pulled front value indeed behaves as
therefore modeled the effect of the particle cutoff in their1/In°N (although it was not realized in Rd8]), with a pref-
lattice model by studying a deterministic continuum frontactor that, over the range ™ values studied, is different
equation, in which the growth term was set to zero for valuegrom the one predicted later by Brunet and Derri@§ but
of ¢ less than . They showed that this led to a correction not as much different as Kesslet al. claimed it to be for
to the asymptotic front speed of the order of nwith a  their own model[10]. For each stochastic realization of a
prefactor, which is given in terms of the linear growth prop-front, which moves into a region where no particles are
erties of the equation without a cutoff. Because of the logapresent, one can always identify a foremost occupied lattice

B. Open questions
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site or “the foremost bin.” In the region near this one, fluc- corrections to the asymptotic lardéresult.

tuations are large and the discreteness of the lattice and of (vi) The model considered by Kesslat al. [10] is

the particle number occupation is extremely important: theslightly different from the one considered by Bree¢ral,, in

standard description, which assumes that the average partidlee sense that number of particles of each species is finite.

density is uniformly translating, breaks down in this region.However,a priori, one expects that this difference in the two

Moreover, since the particle occupation numbers are small imodels would not affect the speed corrections for laxge

the tip, essentially all known methods fail, based as they ar®ur own simulations confirm this, and show no sign of a

on largeN expansions. discrepancy between the asymptotic laNjespeed correc-
With a finite particle cutoff, fronts are never really pulled, tions obtained from the two mode{Sec. V).

but instead are weakly push¢d7]. Even for the simplest e finally note that in this paper, we will focus on the

case of a pushed front in a second order nonlinear partialase where the growth and hopping terms for a few particles

differential equation, in general, the speed cannot be calCugre the same as those for a small but finite density of par-

lated explicitly. It should therefore come as no surprise thaticles. In such cases, the front speed convergedlforo to
with the various additional complications described above,q pulled front speed* of the corresponding mean-field

we do not have a full first principles theory that gives the
front speed for finite values dfl for the model we study.
However, in this papewe do obtaina number of important
results for the behavior in the far tip of the front as well as
for the effect of the region behind the tip on the finNe-
corrections. These results can be tested independently a
our numerical simulations largely support the picture thatin
emerges from this approach. In terms of short answers to the
guestions raised above in Sec. | B, we find that

(i) For extremely largéN, the asymptotic results of Brunet
and Derrida based on a simple cutoff of ordeN ih a de-
terministic equation for a continuum (mean-field type) equa- The challenge of understanding the propagation of any
tion become essentially correct because all the essenti@ne of these fronts lies in the fact that as a consequence of
changes are all limited to a few bins behind the foremosthe discrete nature of the particle events and of the particle
one, where the particle numbers are finite and small; togetherumber realizations, the natural description of the far tip is
with the fact that 1/IAcN)~1/In’(N) to dominant order, this not in terms of a uniformly translating solution for the aver-
ensures the correctness of the asymptotic expressioll for age number of particles in the biriare call each lattice site
— 00, a “bin”), but is in terms ofdiscrete notions such as the

(i) Yes, one can get a more microscopic picture of whatforemost bin, individual jumps, etén additional complica-
happens near the foremost bin of the front; we develogion is that in the presence of fluctuations, the front position
mean-field type expressions for the probability distributionexhibits diffusionlike wandering behavior, which have to be
that describes the “stop-and-go” type behavior théBzc. taken out in order to study the intrinsic stochastic front dy-
IV), and show that the results compare well with numericahamics, just like capillary waves beset analyzing the intrinsic
simulation results, Sec. V. structure of a fluid interfacéSec. IIl B). The implication of

(iii ) A first-principles theory for the stochastic front speedall this is that(i) in the presence of an underlying lattice,
for arbitraryN seems virtually impossible, except possibly in instead of being uniformly translating, the position of the
some special limits, as in principle, it will involve matching foremost occupied bin advances in a discrete mannerignd
the approximateluniformly translatingaverage profile be- due to the discrete nature of the constituent particles, the
hind the tip of the front to th@onuniformly translatingoro-  position of the foremost bin advances probabilistically, as its
file near the foremost bin, where standard methods do naonovement is controlled by diffusion.
seem to apply. Based on these ingredients and observations, the central

(iv) Correlation effects are very important near the tip; wetheme in this paper revolves around a picture of the tip of the
identify two of them and model one: rapid successive for-front that istotally different from the conventional picture of
ward hops of the foremost particle, Sec. IV C 1, and jumpinga pulled front We present the picture here in terms of its
back of the foremost particle, Sec. IV C 2. simplified essences it is helpful for the reader to bear it in

(v) The details of the particular stochastic model play amind throughout this paper: we call the foremost occupied
role for the corrections in the asymptotic front speed througHattice site at the far end of the tip of the front “the foremost
the global average front profilguantified byA of Secs. Il bin.” Therefore, the very definition of thiBoremost binon a
and 1) and through the effective profile near the tip, butlattice site means that it is occupied by at least one particle
their effects are truly minute. We demonstrate this by meanand that all the lattice sites on the right of it are empty.
of a mean-field theory that tries to extend the uniformlyNaturally, an empty lattice sitéall the lattice sites on the
translating front solution all the way to the far tip of the front right of which are also empjyattains the status of the fore-
(described in Sec. Il € In this theory, there is a quantity ~ most bin as soon as one particle hops into it from the left. In
associated with the effective profile at the tip, and we showeference to the lattice, the position of the foremost bin re-
that these two quantitie$y anda, provide only subdominant mains fixed at this site for some time, i.e., after its creation,

equation. As we will discuss elsewhdgl], with only slight
modifications of the stochastic rules for few particles, one
can also arrive at situations where the limits do not commute,
i.e., where the stochastic front speed converges to a speed
larger thenv* asN—x, even though the stochastic model
uld converge to the mean-field equation with pulled fronts
this limit.

D. Complications associated with discreteness of the lattice
and particle numbers
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a foremost bin remains the foremost bin for some time. Durasymptotic result are important, model-specific effects do
ing this time, however, the number of particles in and behindlay a role.
the foremost bin continues to grow. As the number of par- For the major part of our analysis, we focus on the most
ticles grows in the foremost bin, the chance of one of thenrelevant and illuminating case in whidhe diffusion and
making a diffusive hop on to the right also increases. Atgrowth rates of the model are both of the same ordéris
some instant, a particle from the foremost bin hops over taegime is the most illustrative as it displays all the aspects of
the right: as a result of this hop, the position of the foremosfinite particle and lattice effects most clearly. We also inves-
bin advances by one unit on the lattice, or, viewed fromtigate the case when the diffusion rate is much smaller than
another angle, a new foremost bin is created which is onéhe growth rate to illustrate the correlation effects. For all of
lattice distance away on the right of the previous one. Mi-these cases, the matching between the behavior of the tip of
croscopically, the selection process for the length of the timehe front and the standard description of a uniformly trans-
span between two consecutive foremost bin creations is stdating solution behind it is a complicated process, for the lack
chastic, and the inverse of the long time average of this timef a proper small parameter that allows one to do perturba-
span defines the front speed. Simultaneously, the amount ¢bn theory.
growth of particle numbers in and behind the foremost bin The paper is organized in the following manner, in Sec. Il,
itself depends on the time span between two consecutivere describe our modéWhich is the same as in Rg®6]) and
foremost bin creationéthe longer the time span, the longer define the dynamics of the front. The crux of the paper is
the amount of growth As a consequence, on average, thepresented in Sec. IV, where we present a detailed analysis of
selection mechanism for the length of the time span betweetihe microscopic picture of the front dynamics and show that
two consecutive foremost bin creations, which determinegor the description of the far tip of the front, one has to
the asymptotic front speed, is nonlinear. abandon the idea of a uniformly translating front solution.
This inherent nonlinearity makes the prediction of theThe lattice and finite particle effects lead to a “stop-and-go”
asymptotic front speed difficult. One might recall the diffi- type dynamics at the far tip of the front, while the average
culties associated with the prediction of pushed fronts due téront behind it “crosses over” to a uniformly translating so-
nonlinear terms in this context, although the nature of thdution. In this formulation, the effect of stochasticity on the
nonlinearities in these two casesdempletely differentin  asymptotic front speed is coded in the probability distribu-
the case of pushed fronts, the asymptotic front speed is deion of the times required for the advancement of the fore-
termined by the mean-field dynamics of the fronts, and themost bin. We derive expressions of these probability distri-
nonlinearties originate from theonlinear growth terms in  butions by matching the solution of the far tip with the
the partial differential equationthat describe the mean-field uniformly translating solution behind. This matching in-
dynamics(as we discuss in Sec. Il B, if one does not takecludes various correlation effects in a mean-field type ap-
out the wandering of the front positions, then the nonlineaproximation. In Sec. V, we compare our theoretical predic-
growth terms actually do affect the stochastic front dynamicsions of Sec. IV with the stochastic simulation results. In
in a subtle way top On the other hand, for fronts consisting addition to that, in Sec. Ill, we argue that the corresponding
of discrete particles on a discrete lattice, the corresponding¢ront solution is a case of a weakly pushed front and analyze
mean-field growth terms aiear, but since the asymptotic an effective mean-field solution that extends all the way to
front speed is determined from the probability distribution ofthe foremost bin(thereby ignoring its breakdown near the
the time span between two consecutive foremost bin creforemost bin. This allows us to rederive the asymptotic ve-
ations, on average, it is the relation between this pl’Obabi"tyocity expression of Brunet and DerridQ] and obtain the
distribution and the effect of the linear growth terms that thefurther subdominant finité corrections to it. In Sec. VI, we
nonlinearities stem from. carry out the full stochastic simulation for the model consid-
Our approach is to develop a separate probabilistic theorgred by Kessleet al, and finally, we conclude the paper
for the hops to create the new foremost bins, and then tQith a discussion and outlook in Sec. VII.
show that by matching the description of the behavior in this
region to the more standard Or(ef grOWth and rOUghly Il. THE REACTION-DIFFUSION PROCESS X+Y=2X
speaking, uniform translatigrbehind it, one obtains a con- ON A LATTICE
sistent and more complete description of the stochastic and
discreteness effects on the front propagation. In the simplest We consider the following reaction-diffusion proceXs
approximation, the theory provides a very good fit to the+Y=2X on a lattice in the following formulation: at each
data, but our approach can be systematically improved biattice position, there exists a bin. We label the bins by their
incorporating the effect of fluctuations as well. Besides pro-serial indicesk, k=1,2,3 ... ,M, placed from left to right.
viding insight into how a stochastic front propagates at theEach bin has amfinite supply ofY particles. AnX particle in
far tip of the leading edge, our analysis naturally leads to dhekth bin can undergo three basic processgdiffusion to
more complete description that allows one to interprethe (k—1)th or the k+ 1)th bin with a rate of diffusiory. If
(though not predigt the finite N corrections to the front anX particle in bin 1 jumps towards the left, or &particle
speed for much smaller valuesNfthan that are necessary to in the Mth bin jumps to the right, then they are immediately
see the asymptotic result of Brunet and Deriild As one  replaced(ii) forward reaction to produce axtra X particle
might expect, for values oN where deviations from this having annihilated & particle (X+Y — 2X), with a ratey,,
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and(iii ) if there are at least twiX particles present in thith ~ particles can diffuse from any bin to its nearest neighbor bins
bin, then any two of th& particles can react with each other with the same diffusion rate.

and annihilate one&X particle to produce & particle (2X A. The master equation

—X+Y), with a reaction rate/y. The state of the system at

time is given by the numbers ok particles in the bins, reaction-diffusion process inherently introduces fluctuations
denoted agNy,No, ... Ny ;t}. in the number ofX particles present in any particular bin.

~ In the context of front propagation, the above model wasrhjs necessitates a suitable multivariate probabilistic de-
first studied by Breueet al. [6]. Up to Sec. V of this paper, scription of the system. Let us denote the probability of a

The discrete, microscopic description of the above

we will confine ourselves to this model only. In Sec. VI, we certain configuration{N;,N,, ... Ny :t} at time t by
will consider a slightly modified version of this model, nu- P(N;,N,, ... Ny :t). The dynamics of
merically studied by Kessler and coauth¢], in which  P(N;,N,, ... Ny ;:t) is given by the following master

the number ofY particles in any bin is finite, and th¥  equation:

J
EP(N11N21 LI 1NM ,t):Ek ’Y[(Nk+l+1)P(leN21 e !Nk_ 11Nk+l+11 e !NM 1t)

+(Ng_1+1)P(Ng, Ny, o0 N1+ N—=1, ... Ny st)
—2NgP(Ng,No, oo N, N N1, -+ - Ny ]

+ ¥gl(Nk=1)P(N1,Nz, ... Ng—1,Ng=1 Ny 1, ... .Nyst)
—NgP(N1,No, oo N1, N, N1, -+ - Ny ]

Vd
+ 7[Nk(Nk+1)P(vaN21 e ka—lka+ 11Nk+lv e 1NM !t)

—N(Ng=1)P(N1,Ny, .. N1, N N1, - - Ny st (2.2

The above equation is actually not quite accurate at the 1stith
andMth boundary bins, but we refrain from writing out the

correction terms explicitly, as they are not needed in the
analysis below, <N§(t)>:{N }2 NZP(N,Ny, ... Ny:t). (2.4

k'sk'=1---N

B. The macroscopic density field and the Fisher-Kolmogorov

equation For the sake of simplicity, we defing=y/y,, t'= y4t, and

N=2v4/vq, and reduce the number of parameters in Eqg.
If the forward reaction ratey,, is much larger than the (2.3), to have[6]

annihilation rateyy, an initial conglomeration oX particles

will start to grow in size as well as in numbers. To study this _

growth phenomena, we defifél,(t)), the average number — ——(Ni(t'))=Y[(Ni1(t")) +(Ny_1(t")) = 2(Ny(t"))]

of X particles in thekth bin at timet, as Jt

1
(N(D))= > NgP(N;,Ny, ... Ny:t). (2.2 +(Ng(t'))— N[(Ni(t'»_('\'k(t'»]-
{Neher=1...N
2.

Using EqQ.(2.1), it is easy to obtain the time dynamics of 29
(Ni(1)), given by Following the procedure in Ref[6], if one replaces

P the (IN)[(NZ(t))—(Ny(t))] term in Eq. (2.5 by

E<Nk(t)>:')’[<Nk+l(t)>+<Nk71(t)>_2<Nk(t)>] (1/N)(Nk(t))2 and further defines a mean “concentration

field” on the kth bin by introducing the variablep,
4 =(Ny)/N, then from Eq.2.5), one arrives at the following
+ vg{Nk(t)) — 7[<N§(t))—<Nk(t))], difference-differential version of the Fisher-Kolmogorov
equation for the reaction-diffusion proce¥s-Y=2X on a
(2.3 lattice, given by[6]
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d - 5 (2.6) proceeds along similar lines as it does for partial dif-

ST PO =Y 1D+ di-1() =2 h(D]+ (D) — ¢i(1). ferential equations. It is well-known that for Ed8.5—(2.6),
(2.6 the selection mechanism for, depends entirely on the re-

gion, where the nonlinear saturation term(B(NZ(t))

The original Fisher-Kolmogorov or FKPP equati@8,29is ~ —(Nk(t))]/N or ¢Z(t)) are much smaller in magnitude than

a partial differential equation in continuous space and timethe corresponding linear growth teri@N,(t)) or ¢(t)],

Notice that in these variables, the properties of the propagai-e., the leading edge of the front, where the valueg(t) is

ing front depend only on two parametelsand’y. very small, such thaig(t)< ¢,(t). In this region, the non-

linear terms can be neglected, and after having usdd)

=p(k—vast)= (&), where é=k—uv4st is the comoving

coordinate, Eg.(2.6) reduces to a linear difference-

differential equation, given by

As mentioned earlier, in this section we do not consider 5

the proper stop-and-go type dynamics of the tip; instead, asa_ , ¢ oy _1)—

continuation of mean-field equatid@.6) above, we describe ”asag =P+ 1)+ S(6-1) =2 $()]+ ().

the entire front by the uniformly translating profile. We then (3.9

make a number of general observations concerning the uni- ) ]
formly translating front solutions in mean-field type equa-” one neglectsthe fact that the microscopi¥ particles are

tions for the average profile, from the perspective of thediSCrete anassumeshat¢(¢) goes to zero continuously for
questions raised in the Introduction. A central result of the§—, then a natural candidate for the solutionf¢) in
discussion will be an expression for the fintevalue of the ~ thelinear difference-differential equation, EB.1) above, is
velocity, which allows us to interpret deviations from the #(§)=Aex{—z£], wherez is areal and positive quantity.

asymptotic results of Ref9] in terms of physical properties With this solution of¢(£) in the so-called leading edge of
of stochastic fronts. the front, one arrives at the dispersion relation

Ill. MEAN-FIELD APPROXIMATIONS TO THE
PROPAGATING FRONT SOLUTION

2y[coshz)—1]+1
. .

A. Front propagation in the dynamical equation for ¢,(t)

(3.2

Vas=Vas(2)=
From the point of view of average number Xfparticles

in the bins, Eq(2.5) has two stationary states. One of them, | ie the other examples of fronts propagating into unstable
for which (Ni)=N, V k, is stable. The other, for which ga1e5 Eq(3.2) allows an uncountably infinite number of
(Ny)=0, V k, is unstable. This means that any perturbationysympiotic velocities depending on the selected value of the
around the unstable state grows in time until it saturates 3éontinuousparamete|z. However, for a steep enough initial
the stable state value. In particular, if in a certain configuraxgndition that decays faster than exgg) in & for any
fuon.of the system, the stable and the unstable regions coex-. ; determined belowthence, a unit step function obeys
ist, i.e., (N =N, Vk<ko and (N,)=0, ¥ k>k;, with k;  his condition, the observed asymptotic speed equals the so-
>ko, then the stable region invades the unstable region angdyjjed linear spreading speed', given by v* =v*(z,)

propagates into it. In other words, in due course of time, th&yherez, is the value ofz, for which the dispersion relation
boundary between these two regions, having a finite W'dthvas(z) vs z has a minimum.

moves further and further inside the unstable region. For a™pq fact thatv* defined in this way is nothing but the

wide range of initial conditions, the speed, with which thislinear spreading speed, i.e., the spreading speed of small per-

boundary moves into the unstable region, approaches a fixgflihations whose dynamics is given by the linearized equa-
asymptotic valueu,s. Simultaneously, the shape of this on (32 follows from a saddle point analysis of the

boundary between the two regions, determined by the avelgymnotic behavior of the Green’s function for the linear
age number oK particles,(N,), plotted against the corre- oquation(3.2), see, e.g., Refi17]. The name pulled fronts
sponding bin indice, also approaches an asymptotic shapegiems from the fact that this linear spreading almost literally
This asymptotic shape, therefore, becomes a functiorkof («nyjis” the nonlinear front with it, the nonlinear terms just
—v,st) for long times, and this well-known phenomenon is giving rise to saturation behind the front.
known as the front propagation. In the present context, EqQs.
(2.5—(2.6) provide us with an example of front propagation
into unstable states. We will follow the usual convention that
the front propagates to the right in the direction of increasing As we discussed above, in the pulled front regime, the
bin numbers. front speed of a given problem is determined completely by
In the mean-field approximatiof®.6), the average par- the linear term in the dynamical equation. In going from the
ticle density fieldeg,(t) obeys a difference-differential equa- exact equatior(2.5) to the mean-field approximatiof2.6),
tion. The asymptotic speed selection mechanism for propawe appear, at first sight, to have ignored only a term linear in
gating fronts into unstable states has been a well-understoag, of order 1N [the second term between square brackets in
phenomenon for a number of years, and it has been realizéglg. (2.5]. Hence, naively one might expect the front speed
by various authord9-11,17 that the calculation of the to converge as N to the asymptotic value* (zy). We al-
asymptotic front speed on a lattice for the type of E§sH)—  ready know from the work of Brunet and Derrifi@], how-

B. The deceptive subtlety of the mean-field approximation
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ever, that the convergence is much slower, namely, a8\l/In X+ Y—2X does not proceed unless there is at least Xne
How can the two results be reconciled? particle in that bin to start with. As for any given realization
The resolution of the paradox lies in the fact that in theof the stochastic front, the front propagation on a lattice is
mean-field approximation we completely ignore the diffusivetantamount to the discrete forward movement of the fore-
wandering of fronts. If we follow the evolution of an en- most bin by units of Iwhich can happen only through the
semble of fronts, their positioriglefined, e.g., by Eq4.1)  diffusion of anX particle from the foremost bin towards the
below] will fluctuate: the root mean square wandering of theright), in the uniformly translating front solution of ER.6),
fronts grows asyt as for any one-dimensional random the dynamics of the tip of the front is diffusion dominated.
walker[6,12]. This means thain reality the ensemble aver- This makes any given realization of the front weakly pushed
age (Ni(1)) does not acquire a fixed shape in the frame@S OPPosed to being truly pulled, a*nd moreover, the
moving with the average speed. Instead, the average profil@Symptotic speedy is expected to be<v* for a finite N.
(Ny(t)) continues to broaden in time, although the front This |nd|c§1tes that if we want to build all thgse in the same
shapes for the individual realizations reach an asymptotidf@me as in the velocity selection mechanism for a pulled
shape(see Fig. 5 of Ref[6] for an illustration. This has a TNt one has to allow complex values of the parameter
severe consequence: we cannot simply assume that thg€® Ed:(3.2) and the discussion thereabgvEurthermore,
(Nﬁ(t)) term is small in the leading edge of the profile Wherethe existence of a foremost bin requires that the front profile

; ; t have a zera bin ahead of the foremost bitlaving
{Ng(t)) is small, and replace it byN,(t))?>—few members must | .
of the ensemble, which are relatively further ahead, do givgﬁtmbm:doa” t:es.fet?ﬁait?ﬁé' f%nn(i V\;'(t)?.?eu.tnﬁ% Ilpnsesaofege_ger-
significant contributions through this term in regions WhereafI é W(ZnG)V.” qul by[9-11 {6 11?]‘ el f ! <r r* gion
(Ni(t)) is small. Thus, while Eqg(2.5) is exact and contains of Eq. (2.6 is given by|9-11,16,1Tfor ¢(¢) for vy<v™,
the fluctuation effects due to the root mean square wandering —Asinz é+ Blexn —z 3.3
of the front, the mean-field approximatid@.6) throws out 2 "2 &+ Blexp—2 &), 33

such effects completely. such that¢(£) has a node at the coordinate of the bin just

If, on the other hand, we look at the shape of a particularahead of the foremost bin. In Appendix A, we show how Eg.

front realization in the appropriate position, so that the fron 3.3 can be used to determine the complex decay zate
wandering is taken out, the mean-field equation does yield rms ofN and other parameters, and from that we obtain the

reasonably good description of tHisonditionally averaged deviation of the front speedy, from v*. The front speed
front profile in the range where the particle occupation num-¢ given by

bers are large anghence where fluctuation effects are small.
Additional information is needed, however, to calculate the

d?v
front speed. o o NV - ——| 24 O(Z)~vr - —
In passing, we note that the situation is somewhat similar dz dz
to the theory of fluid interfaces: capillary wave fluctuations % %
wash out the average interface profile completely, but on 2.2
; ! 7“2
scales of the order of the capillary length, the mean-field X A o (3.9
} intrinsic i ; ; . omz
theory for the so-called intrinsic interface profile works quite InN+ 2o+ In— +In{ sin 0
well. a INN+1
C. The front speed correction for largeN where, according to Eq3.2),
The above observations already allow us to arrive at and ) ~
extend the results of Brunet and Derridd from a slightly d%as| _ ycOshzg 3.5
different angle than in their original work as follows. First of dz zg '
all, from the discussion above, we notice that even though a %

mean-field approximation(2.6) does not work for the o
ensemble-averaged front profile, but for a given stochastié the limit of largeN, the above result3.4) reduces to
front realization, the mean-field theory does apply to a good

approximation in the bins, where the numberXoparticles . d,| 7z
are relatively large. These are essentially the bins that are UNTUS d2 2N’ 3.6
sufficiently behind thdoremost bin the rightmost bin in the 2

given stochastic realization, on the right of which all bins are

completely empty. Nevertheless, as mentioned in the begirwhich is nothing but the asymptotic expression for the ve-
ning paragraph of this section, we assume that the uniformljocity correction derived by Brunet and Derridé]. Their
translating front solution of Eq2.6) holds for the descrip- approach is based on tipartial differential equatioranalog
tion of the front profile all the way up to the foremost bin for of the mean-field dynamical equati@@.6), in that they in-

a given realization. Second, the actual front solution of Eqtroduced an artificial cutoff for the growth term for values of
(2.6) is a case of aveakly pushedront as opposed to being ¢(&)<e, wheree~1/N, to mimic the dominant role played
a truly pulled front[27,30. This can be understood in the by diffusion at the tip of the front as opposed to the growth
following manner: notice that in any bin the forward reactionterm.
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D. Implications and discussion
. . a k,th bin
The above expressions for the speed corrections are al( ) — ™!

ready quite instructive. First of all, as we pointed out, for the “ .
speed difference* — vy, Eq.(3.5) reduces to the expression I (k,+1) th bin

of Eq. (3.6) of Brunet and Derrid49] at the dominant order

in the limit of very largeN. To this order, the speed change is
given explicitly in terms ofN. The more general expression, Snapshot at time ¢’
Eq. (3.5, however, contains the factofsanda; these affect

the suldominant behavior, i.e., the corrections to the : _
asymptotic largeN expression. For realistic values Nf the (b) 4 I L k, th bin
corrections to the asymptotic behavior can be quite signifi- - ‘;/

cant[9]. As we shall show in Sec. V BA depends on the - AR .’ L (k,+1) th bin
global behavior of the average front solution, including the - AEARAR “

behavior in the region where nonlinearities are important.- - - AEKEEKIAKEK)

This makes its value vary from model to model and it is at Snapshot at time £,

this place where the specific details of the model affect the

speed difference* —vy. On the other handa is only a

parameter that originates through the extrapolation of the (c) |k, thbin
mean-field profile(3.3) to the foremost bin region. We will Sl e 1]

show in the following section that the quantityis a ficti- - (% +1) th bin
tious quantity, as the average front profile deviates signifi- o | o] 4"

cantly from the one in Eq.3.3) near the foremost bin: as we H : : \

shall see, unlike the mean-field solution, itis notevenuni-"—- 1 ® | @] @ | ® M

formly translating.This is the reason that an explicit general Snapshot at time #
prediction for the front speed beyond the asymptotic result
obtained by Brunet and Derrid§9] is hard, if not impos-
sible, to come hy

In passing, we note the following. It is well known from
the analysis of uniformly translating front solutions of the
Fisher-Kolmogorov partial differential equation that front so-
lutions withv<v* are asymptotically given by an expres-
sion like Eq.(3.3), and that these front solutions with nodes
are unstable. This does not mean, however, that the abo
(crude analysis is based on an unstable solut{8r8) and
therefore inconsistent. The point is that the expressto8 szilim Niot(t) ~ Neor(to) _ 4.2)
is only an intermediate asymptotic solution, valid over some N . t—1to
finite range of bins; just as in the analysis of the slow time

relaxation of pulled fronts in partial differential equations simultaneously, the position of the foremost bin also shifts

[17], where such solutions also play a role as intermediatgowards the right. For long times, the average rate at which

asymptotics, but they do not make the full solution unstablethe position of the foremost bin shifts towards the right is the
same as the front speed measured according to the definition,

FIG. 1. Snapshots of one particular realization at tirtlest,,
andt,. The filled circles denote th¥ particles in different bins. At
time t,, the (k;+1)th bin becomes the new foremost bin. In a
similar manner, thé,th bin became the new foremost bin at time

1.

For larget—tgy, Nioi(t) grows linearly and one may define
\}Qe asymptotic front speeagy as

IV. THE PROBABILISTIC DYNAMICS OF THE TIP: Eqg. (4.2), as otherwise, an individual front realization will
BREAKDOWN OF THE DEFINITION OF THE COMOVING never reach an asymptotic shape.
COORDINATE & Let us now examine the dynamics of the foremost bin in
._one particular realization. In Sec. Ill. The foremost bin

Snoves towards the right by means of hops of Xhgarticles.

near the foremost bin, which is the region which determinesl_he way this diffusion takes place is as follows: let us imag-

most of the front dynamics. In the light pf the discussion Ofme that in one particular realization, at a certain tithethe
Sec. Il B, from here onwards, we confine ourselves to the o . f .

. . index for the foremost bin ik4, i.e., at timet’, all the bins
study ofone single front realization

I the right of thek;th bin in that realization are not occu-
Let us assume that as the front moves in time from the leff"” L . e
to the right, at some time=t,, the bink, is deep inside the pied by theX particles|see Fig. £)]. The diffusion of thex

saturation phase of the front. At tintesty, the total number partl_cles from thekyth bin to the (.<1+1)th bin is not a
of particles on the right of thiegth bin is given by continuous process. As a result, it takes some more time

before the firstX particle diffuses from thé;th bin to the
(kq+1)th bin. Let us denote, b, the time instant at which
this diffusion takes placksee Fig. 1b)]. Clearly, there is no
Niot(t) = X, Ni(t). (4.1)  exchange ofX particles between thé;th bin and the k;
k>ko +1)th bin in the time intervat’ <t<t,. During this time,
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however, there can be time spans, where the number of the  TABLE I. Summary of the various coordinate labels used in the
particles in thek;th bin may drop down to zero, since in the paper.
time intervalt’ <t<t,, the diffusion of theX particles out of

the k,th bin towards its left is an allowed process. By defi- K The label of the foremost bin between time
nition, at timet,, the (k,+ 1)th bin becomes the “new fore- t=0 andt=At in an actual realization,
most bin.” Let us now denote, b, the time instant when e.g., in a computer simulation.

the k,th bin became the “new foremost bin” due to the dif- Km The label of the bin that attains the status of
fusion of anX particle from the k;—1)th bin in exactly the the foremost bin at timé=0 in the mean-field
same mannefsee Fig. 1c)]. In this notation, thereforet, theory that we describe in this section.
>t,, and we say thak;th bin remains the foremost bin for Naturally, att=0, the density oX particles
the time intervalAt=t,—t;. If we now have a series of such in it is equal to 1N.

At valuesin sequencei.e., a sequence of time values ky, The label of the bin, where the average front
Aty,At,, ... At;, for which a bin remains the foremost profile $(©, extrapolated from behind, is
bin, then it is easily seen that the asymptotic front speed is equal to 1N.

also given by Ko The label of the bin behind the tip, from

which point on corrections to the profilg(®)
are neglected.
K The bin whereg(®) becomes zero, i.e., the
value ofk where the argument of the sin function
of ¢(© becomes.

o= lim (4.3

Put in a different way, if we denote the probability that a
foremost bin remains the foremost bin for tithé by P(At),

the asymptotic front speed, according to E4.3), is given
by

coordinates.” In this formulationthe clock stops at timat
and resets itself to zerdn this mannerthe propagation of
o ~1 the front is a repetitive process of creating new foremost bins
f d(At)AtP(At)} . (4.4 in intervals of At. Of course, it is a probabilistic process, in
0 which the value ofAt is not fixed.

Henceforth, our goal is to obtain a theoretical expression Qur mean-field theory essentially mimics the stalling phe-
for P(At), for given parameter valued andy. As a first nomenon just as we see it in a computer simulation. In this
approach, we will make an attempt to devise a mean-fieldheory, we also have a foremost bin, which we index by a
theory for this purpose. It is precisely at this place that wefixed integerk,, in the quasi-comoving frame. In these coor-
need to study the origin and the consequences of the breallinates, we describe the dynamics of the front by the average

UNT

down of the definition of the comoving coordinate, number ofX particles in the bins. Between the times 0
andt=At, all the dynamics of the front is confined to the
A. The stalling phenomenon: Lowest order approach left of (including) the k,,th bin. For the benefit of the reader,

o o we summarize the various coordinatessed in this paper in
The origin of the breakdown of the definition of the co- T5pje |.

moving coordinateg, in a mean-field description is quite The equations of motion in this quasi-comoving frame,
easy to understand. As can be seen from the discussion in t'&?lalogous to Eq(2.5), in terms of the bin indicek are
paragraph above E¢.3), the key lies in the fact that for the {erefore given by

time a foremost bin remains the foremost bin, the front in the

tip region does not move at all. We refer to this as the “stall- d ~

ing phenomenon.” During such stalling periods, all the dy-  5; (Nk(1)) = Y[(Nic2()) +(Ni-1()) = 2(Ni(1))]

namics is confined within the left d¢including) the foremost

bin. It is this stalling phenomenon that is responsible for the 1,
breakdown of the definition of the comoving coordinade, +(Nk(t)) — N[<Nk(t)>_<Nk(t)>]'
[31].
Our first step in analyzing the stalling phenomenon is to
Vv k<k,,

get back to thé& and thet coordinates, but in a different way

than we have used them so far: the foremost bin, for the )

entire duration it remains the foremost bin, is indexedaby e _= _

arbitrary fixed integer k in this new scheme of relabeling &I<Nk(t)> PHN-1(D) = (N1 (N(1)

the bin indices. The rest of the bins are accordingly indexed 1

by their positions with respect to ttigth bin. Moreover, we = GUNRDY = (N(t)]  for k=kp,
start to count timdi.e., set the clock at=0) as soon as an N

X particle diffuses into th&;th bin from the left and stop the

clock just when arX particle diffuses from thé&;th bin to the  and

right. This relabeling strongly resembles the system of co-

moving coordinates, hence we call it the “quasi-comoving (N=0, Vk>kp, 4.5
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for 0<t<<At, with the initial condition that(Nkm>=Nkm left, leaving it empty for some time, until some oth¢émpar-

=1 at timet=0. The angular brackets above denote quaniicle hops into it, making it nonempty back again at a time

tities averaged over many snapshots of one single front real<t<At. ) )

ization at timet. We focus our attention to the region at the ~ BY the nature of construction, no mean-field theory can

leading edge of the frontup to thek.th bin), where the €ver hope to capture the fullest extent of these fluctuations,

nonlinearities can be neglected so that the dynamics is givednd the one that we just presented abjdhat represents the
by effect of the stalling phenomenon on the asymptotic speed

selection mechanism for the front by consideriAg\t)], is

d - no exception. Therefore, in this mean-field theory that we
1 =N 2D+ e (D) =2 (D] + (D), described in this section, such fluctuation effects are com-
pletely suppressed. We will return to these fluctuation effects

V k<K, in Sec. IV C below, where we will make an attempt to esti-

mate the effects of these fluctuations B(At). The corre-
J sponding estimates will then be used to improve the theoret-
— () =Y Pr_1(1)— dp(H) ]+ Pi(t)  for k=kp,, ical prediction of P(At) as well as to draw limits on the
at 8 validity of our mean-field theory.

with ¢y (t) =(N(t))/N, 0<t<At and ¢ =1 at timet B. Effect of the stalling phenomenon on the front shape near
=0. Equation(4.5 explicitly illustrates that the growth of the foremost bin
the probability ahead of the foremost bin is somewhat differ- : . . "
;enr;t from that behind the foremost bin as a result of the stall;[y pl: etr(]s ; epsr;(;id;g%(zl:?siﬁii?rr; SVZ)?&E:?;;‘ ;’? dAa}irrSrleaa;_ field
Before, we already introduced the probabilfyAt) that proximation for(Nkm(t)) would be obtained from the solu-
the foremost bin remains the foremost one between the timg#on of Eq. (4.5 above. However, in practice, the average
t=0 andt=At. Since the foremost bin ceases to be theoccupation(Ny (t)) is affected by the stalling effect itself.
foremost one when a particle jumps out of it to the neighbor\Ve now account for this effect in a self-consistent way by
ing empty one on the righ>(t) obeys the equation calculating the corrections to the front shape near the fore-
most bin. We start with Eq(4.6), and subsequently build
@7 upon the considerations of Sec. Ill, where we derived the
' ' solution¢ (&) = A sinzélexp(—z ) at the leading edge of the
front.
satisfying the normalization condition. Clearly, as one can A naive approach would be to claim that the shape of the
see from Eqs(4.4) and(4.7), the proper asymptotic speed is leading edge of the front, described by the set of equations
determined b)(Nkm(t)>, which in turn must come out of the (4.6), is given by ¢, (t)=A sinNz(k—uvnt)+Blexd —z(k
solution of Eq.(4.6), i.e., from the effect of the stalling phe- —vnt)] for 0<t<At in the quasi-comoving frame. Notice
nomenon on the leading edge of the front. that we have rellntroduce_d thg phase faggoinside the ar-
The dynamics of the leading edge of the front, describe@ument of the sine function, in view of the fact thatan
by our mean-field theory in the preceding two paragraphs, i§nly take integral values. This solution @(t) would once
a clear oversimplification. In an actual realization, the dy-2gain generate the same dispersion relation as in(Az.
namics of the tip that governs the probability distribution However, it is intuitively quite clear that this solution of
P(At) in the quasi-comoving frame, is quite complicated. #k(t) cannot hold all the way uptk=ky,, since the equa-
The foremost bin has 0n|y a few partideS, and as a Consélons of motion fork< km are different from the equation of
quence, the fluctuation in the number of particles in it playsmotion fork=k,. First of all, ¢, (t=0)=1/N, which may
a very significant role in deciding the nature of the probabil-not necessarily be equal to the value of the function
ity distribution P(At). Arising out of the fluctuations, there A sinz(k,—uvnt)+B8lexd —z(ky,—vnt)] at time t=0. Sec-
are two noteworthy events that have serious consequencesd, for the entire duration of ©t<<At, the tip of the front
for the behavior ofP(At). is stationary ak,,, and as a result, the flow of particles from
(i) The creation of the new foremost bins is a probabilisticthe left starts to accumulate in thgth (foremosj bin. With
process, for which the time scale is characterized loy; 1/  increasing value of, bins on the left of the foremost bin get
However, if several foremost bins are created sequence to know that the tip of the front has stalled, and the correla-
relatively fast compared to the time scale set hy,l/then  tion among different bins starts to develop on the left of the
one naturally expects that soon there would be a case whdoremost bin. As a result, an excess of particle density be-
the new foremost bin would be created at an unusually larggond the corresponding “normal solution” valuéssin z(k
value of At. —unt)+Blexd —z(k—wvnt)] builds up on the left ofinclud-
(if) According to our definition, in the actual realization of ing) the foremost bin over time. This is demonstrated in Fig.
the system, thé;th bin remains the foremost bin between 2.
timet=0 andt=At. However, it may so happen that during  To deal with the effect of stalling phenomenon on the
this time, all theX particles in theksth bin diffuse back to the density ofX particles in the bins at the tip of the front, which

_ _ (At
P(AY)= y<Nkm<At>>exr{ -5 fo dt(Ni, (1))
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d
k, th bin a&b(t)=M 0P (t)+ 6Dy, (4.10
k,th bin ) ) ) o
(foremost bin) whereM is the K,,—kp) X (k,,— kp)-dimensional tridiagonal
6" (® symmetric matrix,
Snapshot at time ¢ [1-5 5 0 e 0 0 ]

FIG. 2. Snapshot of the tip of the front in a mean-field descrip- ;’ 1_2;’ h?" 0 s 0
tion at time O<t<<At, showing density buildup oK particles on 0 7}/ 1_2;/ 7y o 0

and behind the foremost bin for a large enough valud. ofhe M=
dotted curve is for the “normal solution,’s{?(t)=A sinz(k
—up\t) + Blexd —z (k—upt)]. The solid curve is for the actual func-

tion ¢,(t). Even though bothp(?)(t) and ¢,(t) are discrete func- 0 0 y 1-2y Y

tions ofk, we have drawn continuous curves for clarity. 0 L. 0 0 3’, 1_2‘;,

is very crucial to calculatéNkm(t)), let us expresg,(t) as (4.13

o and 5cpp:[}(¢<kflj—¢<kﬁj+l),o, ...,0. The solution of the
(1) = @i (D) + 5 (1), (4.8 linear inhomogeneous differential equation, E4.10, is
straightforwardly obtained as

where ¢{9(t)=A sinz(k—uv\t)+Blexd —z(k—uv\t)]. The

quantity 5¢,(t) then denotes the deviation of the density of od(t) =exdMt]oP(t=0)

the X particles in thekth bin from the “normal solution” .

¢(k°)(t). It takes time for the deviation to develop in any bin, +f dt’exdM(t—t")]oP,(t"). (4.12

0

and moreover, since such correlation effects spread diffu-
sively, the information that the tip of the front has stalled at ) ) L _
the foremost bin does not affect too many bins behind thd 0 obtain the expression <)'\Ikm(t»' which is our final goal,
foremost bin. Thus, it is reasonable to assume that on the lefve have to determine the unknowéi (t=0). Of these, the
of the foremost bin, there exists a bin, henceforth indexed bgxpression ofé¢y (t=0) is already known from the fact
Ky in this quasi-comoving coordinateé.e., k,<kp), where that at timet=0, there is exactly onX particle in thekth
the magnitude oB¢,(t) is so small that we can impose the bin, i.e.,

condition thatogy (t)=0. We then substitute Eq4.8) in

Eq. (4.6) and without having to worry about the equation of — ) — E_ ()1 _

motion for 5¢y (t), we obtain the equations of motion of the Ok, (1=0) N Pl (¢ 0). 4.13

antitiesd ¢, (t) for k,<k=k,, as
quantitiesdg(t) b m The values o5, (t=0) for k,<k<k, are also quite easily

J determined when we notice that at tirne At, the values of
qubk(t):;,[ S 1(1) =2 (1) ]+ Sy (1) gqbk(t:A_t) must reach the corresponding values of
dr_1(t=0), because the average shape of the front repeats
itself once evenyAt time (note here that the repetitive char-
for k=k,+1, acter of foremost bin creation in the quasi-comoving frame is
built in). This leads us to the following set &f,—k,—1
consistency conditions:

] -
71 0BV =Y 8¢+ 1 (D + Iy—1(1) =2 5¢(1)]

Oy, +1(t=0)= “d(AnP(Ans La(AY),
+8y(t), V (kp+1)<k<kpg, P, a ) fo (A)P( )d’kb 2(At)

J ~

57 0D =Y 6¢k-1(1) = (1) ]+ S¢hi(1) )
- o o S, -o(t=0)= J d(ADP(AD) 5y 1(A1),

N bii1— ¢l 0

for k=K. 4.9 - 1

Sy _1(1=0)= fo d(AP(A) Sy (A1) — ;.

If we now denote theK,,—ky)-dimensional column vector (4.14)

[6x (1),0bk_1(1), ... 8¢ 11(1)] by 8®(t), then Eq. , o

(4.9) becomes an inhomogeneous linear differential equatiod e equation ford¢, _1(At) is different from the other

in 6d(t), given by ones in Eq(4.14), as it has an extra 1/N on its right-hand
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side(rhg). This is so, because the oXeparticle that hopped In our mean-field theory, what is the numerical value of
over to thek,th bin att=0, came from theK,,— 1)th bin. (km—kKm,), the distance between the bin, where the lowest

In actuality, Eq.(4.14) should be written in terms ab’'s. ~ order approximation®) reaches the valuesN/and the bin,

If we do so, then on the rhs of the corresponding equations,here the actual average profi reaches this value? For
we have integrals of the fornfigd(At)P(At) ${*(At). We . ~ )

. Y i L . arbitrary values oN and vy, this is not an easy question to
have replaced these integrals tbff_l(t—O). This is consis- answer

tent with the fact that in an average sense, the underlying To check our theorv. in this paper we confine ourselves
particle density fields{®)(t) has a uniformly translating so- ory, pap o
lution. The leftoverdeg, terms then yield Eq(4.14). mostly to the case of=(growthrate}=1, as it is the most

In terms of this formulation, the leading edge of the front, |IIus_trat|ve case to demonstrates the multiple facgts of fluc-
whose equation of motion is governed by the linearizeduating front~propagat|on. For a part of the anaIyS|s,~we also
equation, Eq(4.6), is divided into two part§32]. In the first ~ consider they=0.1 case. For such values ¢f i.e., if y is
part, which lies on the left ofincluding the kyth bin, the  too small (y<1), or not too large§~1), the only informa-
solution is given by the forme,(t)=Asinz(k,—uNt)  tion that we have at our disposal to obtain the value of the
+plexd —z(kn—uvpt)] for 0<t<At. In the second part, continuous parametés,, is the fact thaky,>kp, . For such
constituted by the bins indexed liy such thak,<k<kp, values ofy, therefore, the only remaining way to generate
the shape of front is given by Eq&.7)—(4.14). The first part v, . ' only g way 1o gen

. ; . i N . the P(At) curve is to use trial values &, for k,>k,, in

yields the linear dispersion relation, E¢2), while the sec- ) _ _ o
ond part yields more complicated and nonlinear relations bedn iterative mannei33] [recall that the value dfy, is needed
tweenvy, z,, andz; involving several other unknown quan- for the initial condition, Eq.(4.13]. For such values oy,
tities as a self-consistent set of equations. With the values dhe use of the trial values d&;, to generateP(At) also re-
A, kg, andk, externally determined, if one counts the num- quires the value ok, —ky, as an external parameter, which
ber of equations and the number of unknowns that are availkan be chosen to be a few, say4 [of course, this number
able at this juncture for the selected asymptotic spggd  can be increased to obtain higher degree of accuracy for the
then, from Eqs.(A2), (4.4), (4.8), and (4.12—(4.14), it is 8¢ (t=0) valueg. We will take up further details about it in
easy to see that they involve as many unknowns as the nunec. V. However, before that, we next discuss two additional
ber of equations. The value #éfis obtained by matching the fluctuation effects that have important consequences on the
mean-field solution of the bulk of the front, where the non-P(At) curve. We also mention here that we have explored
linearities of Eq.(4.5 play a significant role, with the solu- the possibility of a relation betwedq, obtained from com-
tion of the leading edge of the front described by the lineaputer simulation results, ard,,, but due to the fact thd;
equationdi.e., Eqg.(4.6)]. On the other hand, obtaining the has stochastic fluctuations in time, such a relation does not

value ofk, andk,,, for a given set of parameteksandy, is ~ €Xist.

a more complicated process and now we address it in the

next_fe_w paragraphs. We will take up these issues in fur_ther C. Additional fluctuation effects

detail in Sec. V D as well, when we compare our theoretical ) . ) .
results with the results obtained from the computer simula- aving described the mean-field theory, we are now in a
tion. position to assess its accuracy or validity for the probability

While it is easy to determine the foremost bin and hencdlistribution P(At) that it generates, before we start to look
definek; for any given realization in a computer simulation, 10f numerical confirmation. At the end of Sec. IV A, we have
the question how to obtain the valueskof, 8, andk, for a mentioned that the fluctuation of the numbeXgbarticles in

. t of val ol and>. still o t, b d the foremost bin plays a very significant role in deciding the
%g/e; fsire')stost:a/a l':gsansvigr z/r’]isSI ur:strt}iwswz ri(?;;n"\;rg " nature of P(At). Such fluctuations are not captured in our
absorb the li)antity} N Kby a c?han N c;f variable,k+ mean-field .theory, which simply assumes that the number of

" suchqthat e quési como?/ing fram¢(0)(lt) o X particles in the foremost bin &&= 0 is 1 and afterwards the
— LK, - Kk -

_ i _ number of theX particles in it increases through the process
duces toA sinz(k—uvnt) lexd —z(k—vt)]. First, this makes ot 5 mean growth. In particular, at the end of Sec. IV A we
k a continuous variable as opposed to a discrete integral 0Ng e described two kinds of events that, we now argue, af-

Second, the number of unknown quantities is also reducegl the nature ofP(At) for large values of\t, compared to
from three to two, namely, t&,, andk,. the time scale set by ;.

If we now look back at Fig. 2, and recapitulate the struc-
ture of the mean-field theory we presented in this section, we 1 Few foremost bins are created too fast in a sequence
realize that the buildup of particles in the bins at the tip of

the front due to the stalling phenomenon always makes the N first of these events is that if a few of the new fore-
curve ¢ (t=0) lie aboved(%)(t=0), when they are plotted most bins are created relatively fast in a row, then soon there

against the continuous variabke In our mean-field theory, would be a case'of anew foremos.t biq creation thaF takes an
b (t=0)=1/N, which clearly means that¢f<°)(t=0) unusually long time. Natura_llly, this giveB(At) a higher
m _ ©re— oy ) m ~ value than what our mez.intfleld_theqry does for large values
<1/N and since¢;’(t=0) is a monotonically decreasing of At. The reason for this is quite simple: the mean growth
function of k, this further implies thatky,>kmn, where  of the number ofX particles in the foremost bin is exponen-
¢(k(:(t=0)=1/N. tial in time, which would indicate that if one describes the
0
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growth of the number oK particles in the foremost bin sim- mains the foremost one until timte= At, it may so happen
ply by mean growth, then the probability distributi@®fAt)  that at some nonzero value tfall the X particles diffuse
decreases very rapidly for larget, and clearly that fails to  pack to the left leaving the foremost bin empty for some time
describe the slow decay @t(At) for largeAt arising out of  anq then anotheX particle diffuses into the foremost bin
thlsLJe¥ent. v there | , He eff ffrom the left, making it nonempty again at a finite valuet,of

_Uniortunately, there is no way to estimate the efiect ofg,, 54—t Clearly, this event is much more unlikely to take
this event within the scope @iny mean-field theory, since by . : .

eolace once the number of particles in the foremost bin has

its sheer nature, it can only be described by the multitim ) in th Il theparticles in the f
correlation functions of the times required for sequential cre3"0Wn, since In that case, all theparticles in the foremost

ations of new foremost bins. For this reason, we call thiddin have to diffuse back to the left. Essentially, this event is
event “correlated diffusion event” for later reference. But therefore restricted to the following sequenca): startingt

the physical effect of it can be expressed in a slightly differ-=0, the foremost bin remains occupied by a singlearticle
ent manner which is more conducive for understanding théor some time,(b) this X particle then diffuses back to the
conditiqns of applicability of our mean-field theory. In our left leaving the foremost bin empty, untit) anotherX par-
_mean-fleld theoretical description, t_)eforeanew foremost bificle diffuses into the foremost bin, making it nonempty
is created, the shape of the front is always saenemean  4gain at=t,. Of course, the value df, is not fixed and it is

tsr?ape, d]:escribedt Ey Eqd.5. Or; tge oltr;.er Ta][‘d’tif a few Ofth chosen probabilistically. For later reference, we call this “the
€ newloremost bins are created refatively fast ina row, acant foremost bin event,” and this event is much more

leading edge of the front gets more and more elongated o o~
while the number of particles inside the bins in the leadinglikely to take place for large diffusion coefficient

edge does not get a chance to grow accordingly. Thus, this Based on the picture described(@—(c) in the preceding
event creates significant deviation for the actual front shapparagraph, we can now make a quantitative estimate of this
from the front shape described by our mean-field theory. Thearticular event and accordingly correct the expression of
magnitude of this deviation, measured by subtracting thep(At). One simply has to realize that if this event takes
mean-field density of thX particles from the actual density pjace, then the time at which the theory for mean growth of
of X particles inside the bins at the leading edge of the fronty particles in the foremost bifwith exactly oneX particle to

is obviouslynegative If we Comblne_t_hls argument with the.start with can be applied in this quasi-comoving frame,
fact that on an average, the probability of a new foremost bmShifts fromt=0 to t=t.. However we also need to obtain
creation increases with the increasing numbeKgfarticles . _f h - ‘i' h" be obtained usi

in the foremost bin, then it is easy to realize that after a2N €Stimate for the value @. This can be obtained using

sequence of such fast creations of new foremost bins, thi® following argument: if in stegb), the onlyX particle in
front needs to replenish the number Xfparticles in the f[he foremost b_ln had diffused to the right, instead of diffus-
leading edge before another new foremost bin is created. It {819 t0 the left, it would have been a case of a new foremost

this replenishing process which is responsible for the nexpin creation, the time scale for which is set by/ Since
new foremost bin creation at a relatively long time. the probability of this singl&X particle in the foremost bin to

It is now intuitively clear that in terms of the front shape, JUMP to the right is the same as the probability of it to jump
the larger the deviation such an event causes, the mof@ the left, we can also say that the time it takes for Xne
P(At) will be affected for large values dft. Based on this particle in the foremost bin to diffuse back to the left takes
we now argue that for a fixed value Nf such an event does aPProximately a time jy startingt=0. Similarly, step(c)

not affect the largeAt behavior of P(At) curve for large is exactly the same step as a “new foremost b.in creation.”
~ . ~ Hence, after stefb) is over, it takes a further &{ time [34]
values of y as much as it does for small values ®f To

reach this conclusion. one simoly needs to observe the fof_or anotherX particle to diffuse from the left into the fore-
J ' Pl : . most bin. Together, these two events make 2/vy [35],
lowing: the mean shape and the corresponding density of the ; ; -
. . . . ._and this argument illustrates that this event affects the behav-
X patrticles in the bins at the leading edge of the front is. .
; ~ ior of P(At) only for At=2/v\ . Having neglected the effect
characterized by, andz;, and for smally, the values o, f the correlated diffusion events on tiéAt) curve fort
and z; is IargeNand vice versas z~z,~7y 2 see Eq. >2/vy (for which we have no theoretical estimate anyyay
(A9)]. For largey, therefore, for the mean shape of the front, if we now claim that forall At values greater than®y, the
the leading edge is already quite elongated and the density gobpulation of theX particles in the foremost bin is described

the X particles at the tip of the front is quite small, comparedby Egs. (4.5), but with the condition thatNy (t=to))
to their smally values. As a result, for smajl, the magni- =N, (t=to)=1/N, as opposed to havingN, (t=0))
tude of the deviation from the mean front shape, caused by Ny, (t=0)=1/N, then we can still incorporate the effect of

such an event is much larger, and since the growth rate igis event(that arises out of fluctuatiopsithin the scope of
always unity for ally, it takes a much Ignger time to rep~len- the mean-field theory that we described in this section. If this
ish the density ofX particles for smally than for largey  procedure is correct, then while comparing the theoretical
values. P(At) curve with theP(At) curve obtained from the simu-
lations, one would notice that for large values &f, this
procedure underestimates the magnitud@@Xt). Hitherto,
The other kind of fluctuation effect has to do with the factthis underestimation then would be an indication of the effect
that albeit according to our definition, the foremost bin re-of the correlated diffusion events d(At). We will return

2. Particles in the foremost bin jump back
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to these points once again in the following section, where wef a recursive feedback mechanism to generate/fit)

seek numerical confirmation of our thedi36]. curve, and(iii) we still need the values oA, z,, andz,
which can be obtained only from the simulation data for
D. Summary of the status of the present approach given values o and’y. In view of these points, it is clear
and additional observations that this theory is unable to make a definitive prediction for

vy, Without any assistance from the computer simulations

The discussion above completes the theoretical formulawh ;
. . . atsoever. Moreover, the Eq$4.4)—(4.14), which one
tion for the asymptotic speed selection of the front. Before q84.49—(4.19

, i ~ needs to solve to generate tR€At) curve, are highly non-
we discuss how given values Nfand y would generate the

) X linear equations, hence, this theory can only hopshow
corresponding values afy from our mean-field theory de- .ynsjstencywith the results of the computer simulations, as

scribed in this section, we summarize our claims here an‘apposed to produce a numerical valuevgf which is then

make a number of additional observations. . . :
s ; e subsequently confirmed by the computer simulations.
(1) Based upon the microscopic description of the front (5) Finally, we note that unlike Eq3.4), this theory does

movement, we have formulated a mean-field theory that de- t make the effect of the value bfon the asvmptotic front
scribes, on a lattice, the front propagation as a sequence 8 ymp

“halt-and-go” process. In this way of looking at the front Speed (_axplicit. However, it is natural to_expect thgt the effe_ct
propagation, essentially the numberfparticles at the tip of _stalllng of th_e front and the associated particle density
of the front determines the asymptotic speed of the frontPuildup at the tip of the front on the front shape and speed
Since the number oK particles at the tip of the front are Would become less and less for increashgThis would
rather few, the fluctuations in the numbenoparticles at the ~ reflectin the comparison of thép,(t=0) values against the
tip of the front affects the asymptotic speed of the front in acorrespondings{”)(t=0) values in the bins at the very tip of
strong manner. Part of the fluctuation effects can be estithe front. We would return to this point in Sec. V D 2.
mated within the scope of this mean-field theory itself. The

other part, for which the fluctuations can only be studied by V. TEST OF THE THEORY AGAINST COMPUTER

means of a multitime correlation functions, is expected to SIMULATIONS

affect the accuracy of our theory much more for smethan

for large’y values. Therefore, overall, in terms of numerical
confirmation, one can expect to find a greater accuracy f

large values ofy.

Moreover, for largey, the discreteness of the lattice ef-
fects are suppressed, and therefore, for a given valus, of
one would expect that the relative correction for the
asymptotic front speedp{ —vy)/v*, must become small. ) ~

(2) There are two important aspects that one must tak&€noose one particular set & and y values, namelyN
notice of. First, in a mean-field description that incorporates=10* and y=1. We then use these methods to obtain the
the effect of the stalling phenomenon, we have demonstratesimulation data for three other values dF namely, N
from the microscopic dynamics that theegists a cutoff of — 12 N=10%, andN=10P, keeping the value o fixed at
particle density which is expressed by the fact that in this 1 Based on this scheme, this section is divided into five

mean-field descriptiong,(t) =0 for k>k, against a finite g hsections. In Sec. V A, we present the simulation algo-
value atk=k,,. Second, we have also demonstrated that the

quantitya in Sec. Ill is indeed an effective quantity only, as ''thm and obtairvy for y=1 andN=10". In Sec. V B, we
the solution of the linearized equation of the front, given bySummarize the method to calculate and subsequently ob-
Eq. (3.3), is not valid near the foremost bin, and the fact thattain its value fory=1 andN= 10" using the results of Sec.
the asymptotic speed selection mechanism arises from ¥ A. In the Sec. V C, we contrast the simulation results of
proper probabilistic description of the tip of the front. Secs. V A and V B with the theory of Sec. Ill. In Sec. V D,
(3) For very small values ofy, we have previously no- We test our theoretical predictions fgr(At) against the
ticed that the correlated diffusion event plays a very domi-computer simulation results fdd=10" 10?, 1¢°, and 16,
nant role that no mean-field theory can ever generate, so Wgnd }:1 (in that ordey. Moreover, in Sec. IV, we have
should leave the/<1 case outside the purview of our mean- conjectured that the mean-field theory mimicking the stalling

field theory(We will demonstrate this in the fOllOWing sec- phenomenon would be less successful for small Va|u68 of

tion). . . We verify this conjecture in Sec. V D 2 by means of a rela-
(4) To judge the appropriateness of our mean-field theory;je comparison of the theoretical and simulatidifAt)
as far as the generation of the numerical value of the

) i ~ . curves fory=0.1 andN=10"*. We also remind the reader
asymptotic front speed for given values !‘cbfand YIS CON- — thatin Secs. V A—V Ck andt, respectively, denote the labo-
Serned, we make thg fol!owmg observat|o(1$._the case“ of ratory bin coordinate and actual physical tifaad therefore
y<1 cannot be studied in terms of a mean-field the@iy, they donot relate to the quasi-comoving coordinates or the

the case ofy~1 needs a trial value df,,> kmo and the use resetting of clocks that requires<G <At).

We now check our theory, as it has been presented in
c)Secs. Il and 1V, against the results of the computer simula-
fions. There have been quite a few aspects of the theory that
we have presented in Secs. Il and 1V; and for a given set of

values ofN andy, testing all these aspects of our theory is
not a short and easy process. To explain how we do the
simulations, obtain andA, and check the front shape, we

036206-14



FLUCTUATING PULLED FRONTS: THE ORIGIN AND.. . .

A. Computer simulation algorithm

Our algorithm for carrying out the computer simulations
is the same as it has been described in R&f.The starting
density profile of theX particles is a step function, given by
d (t=0)=[1-0O(k—Kkg)], for somek,. The simulation al-
gorithm consists of repetitive iterations of two basic steps.

(i) Let us assume that at any tinhethe configuration of
the system is given byN;,N>, ... ,Ny/), for somek’. The
total rate of possible transitiongy,, for theN, number ofX
particles in thekth bin are the sum of I8, diffusions, cre-
ation of Ny, new X particles, and annihilation oNy (N
—1)/N number ofX patrticles, i.e.,

Ni(Ng—1)

W, = 2yN,+ Ny + N

(5.9

The total rate of transition)V,,, for all the bins is therefore

k/
Wtot:kgl W,. (5.2

Starting at timet, the probability of no transition happening
for an intervalr is given by

p(1)=expl—Wie 7).

Before any transition takes place, a random numbgers
chosen within the intervdl0,1). The timer that one needs to
wait before any transition happens is then determined as

(5.3

(5.9

(i) With the time7 for a transition at our disposal, the bin
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FIG. 3. To illustrate that the front reaches its steady state shape
beforet=200, the plot of¢,(t) vst for five different values ot
spaced at regular intervalss=200,t=250,t=300,t=350, andt
=400, are shown above.

Once the transition is determined, the configuration of the
system is subsequently updated. However, dparticle dif-
fusing from the first bin(i.e., k=1) towards the left is im-
mediately replaced.

In this subsection, we focus on one particular set of values

of 7 andN, namely,y=1 andN=10". The value ofk, for

the initial density profile of th& particles is chosen to be 50.
Starting att=0, we let this initial profile evolve in time. To
obtain the random numbers, we use the random number gen-
erator drand48 provided in the standard C library functions
with the initial seed37] s=123456. It turns out that to a
very good approximation, the front shape reaches a steady
state somewhere befoite=200. The front shapes frorh
=200 tot=400 is shown in Fig. 3 as an illustration. For
measurement of the asymptotic quantities, therefore, we take

where the transition takes place and the specific transition ip— 200 as our starting point.

other set of two random numbers, andr,, in[0,1). From
the numerical value of,; and the fact that the probability of
a transition taking place in thieth bin is given byW, /W,

sure theAt values for creating new foremost bins after
=200 till t=700. We find that altogether there are 980 dif-
ferentAt values in this time interval. Assuming that tin

we determine the index of the bin where the transition takega|ye ofAt takes place at timg (j=1,2,...,980), we de-

place. Similarly, the particular transition in theh bin is

determined from the numerical value of and considering
the probabilities of different kinds of transitions in théh

bin,

¥ Nk

(probability of a diffusion to the right= W’
k

Ny

(probability of a diffusion to the lejt= )\/N ,
k

N
(probability of breeding a newX particle =Wk,
k
Ni(Ng—1)

NW,
(5.5

(probability of annihilating anX particle) =

fine thejth cumulative average of th&t values as

1 J
(At)=7 > Aty (5.6
ji’=1

which subsequently allows us to define the speed at time
as

1
UN(tj):m- (5.7

Naturally, for small values of, the values ob\(t;) fluctu-
ate, but asj becomes large, the fluctuations die out and
vn(t;) approachesy . The plot ofvy(t;) vst; is shown in
Fig. 4 forj=1,2,...,980, t;=200.562 andggy=699.271.
We notice from the plot that the fluctuations iy (t;) are
really small fort;>500. Thewvy(t;) values fort;>500,
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FIG. 4. Values of vy(t) for 200<t;<700 and j £
=1,2,...,980. As expected, the fluctuationsir(t;) die out for
large values of. FIG. 5. Theoretical shape of the front represented by the solid

line and the shape of the front obtained from computer simulations
therefore, allow us to set the error bar on the measurement @f three discrete times= 200, t=280, andt=360, represented by
vy in Eqg. (5.8), and we obtain three different symbols.

vn=1.964+0.006. (5.9 indistinguishable from the simulation data. The theoretical

curve is first generated using the method described in Sec.

V B with vy(tegg as the asymptotic front speed, the corre-

sponding values of,, z,, z; andA of Egs.(B6) and(5.9),

and then having it shifted to coincide with the laboratory
The quantityA has been introduced to solve for the linear frame position of the front at=200.

difference-differential equation, Eq(3.1). Its numerical We now return to the result of Sec. Ill, and denofe

value, however, cannot be determined from the linear equa- ;,  optained from Eq(3.6) by Avasymp For y=1, Eq.

tion, sinceany value ofA satisfies it. To determine the value (3.9) yields z,=0.9071032 ... and*=2.07344. Using

of A, therefore, one needs to solve the fulbnlinear these values foN=10", we obtain

difference-differential equation, E(R.6), expressed in terms

B. The coefficientA as a reflection of the nonlinear front
behavior

of the comoving coordinates. This is done, together with Avasymp=0.15202 . . .. (5.10
the associated values of the real and imaginary pag of _
Appendix B: fory=1 andN=10", we find On the other hand, usingy(tegg for vy, the valueAvgin,
=p* —vy comes out to be
A=0.961+0.012. (5.9
Avgim=v* —vn(tggg ~0.11, (5.11
C. Numerical test of the predictions for consistency of front which implies that the asymptotic estimale ,5ympiS about
shape and speed 38% larger tham\v s, from the computer simulations.

Equipped with the value o& and the simulation data, we These results clearly indicate that for large but not ex-
are now in a position to contrast the result of Sec. 11l with thelrémely large vaIuEs Xl (N= 104_here), the_rze is much more
simulation results. The purpose of this subsection is twofoldt© the story than™* —uvy being simply=In~“N. The theory

first, we demonstrate that the theoretical shape of the frorﬁresegted in Sedc. I docra]stcapture t?e essentiali, and iLWOUf'd
. ~_ _ ave been good enough to generate appropriate numbers for

ge_znerated in Sec. V B fop=1 ar_1dN 10 agrees very wel v*—wvy, if one could obtain the value @t externally. How-

with th_e shape of the front o_btame_d from the simulation dataever in view of the fact that the uniformly translating solu-

by taking snapshots at arbitrary times. Second, we demor{— '

strate that there argignificantdifferences in the two values f:?rgrzgsiqbiﬁlz.S%ecazgﬁiitbeisef?ct:ﬁtri]gjg ;rlll dtgﬁnwlayal;pe;fzge
of v* —vy, one obtained from Eq3.6), and the other from ' q i Py

tive quantity(already mentioned in Sec. )lITherefore, it is

Eq. (5.9. : . .
To compare the shapes of the front obtained from thenot possible to obtain the numerical value afrom com

. ) gyter simulation results or from any theoretical estimate. Be-
theory and the simulations, we choose to take snapshots Sides, the theory of Sec. Ill completely overlooks the micro-
three discrete timeg,=200, t=280, andt=360. In Fig. 5 ' y ) pietely

we present the plot that contains the front shapes for the scopic intricacies at the tip of the front, and hence, it should

times obtained from the simulations and the theory. The co- e regarded as an effective theory.
moving coordinate for the bins is chosen in a way such that
it coincides with the laboratory frame position of the front at
t=200. As we can see from the graph below, the collapse of In this subsection, we seek the numerical test of our
the data fot=200, t=280, and =360 is very good and the theory presented in Sec. IV. We carry out this task in two
solid line representing the theoretical prediction is almosisteps. In the first step, we check most of the aspects of the

D. Numerical test of the theory for P(At)
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theory forN=10" andy= 1, where we describe the method 12— Commtor S Taton dota

for obtainingP(_At_). Subsequently, in the second step, we I — FZ”";";;:;;;;:?;;S;;SRJV
check the predictions of our theory foi=10% 10°, and \o. —-o- With 86,(:=0) = O for k= k
10°, keeping the value of fixed at 1.Notice that compar- 08 |\  inthetheoryof Sec. IV

ing probability distributions allows us to verify more detailed

representations of the actual forward movements of the fore- P(an

most bin against comparing only the asymptotic front speed

vy, Which is the inverse of the first moment7fAt) [see 04 1
Eq. (4.4)]. We should note that in view of the strong nonlin-

earity of the self-consistent theory of Sec. IV, we will have to

use the values oA, z,, vy, andz obtained from computer .

simulations to generate te(At) curve, and then obtain the 0
theoretical value oby. This process therefore becomes a
self-consistency check of our theory of Sec. IV, as opposed

to a verification of its predictions. Moreover, we do not com-  FIG. 6. The cumulative probability distributidh(At) as a func-
pare theP(At) curves directly. This is for a very simple tion of At for N=10" andy=1.

reason: namely, that the expression ffAt) in Eq. (4.7)

involves (Ny (At)) as a coefficient. In an actual computer ,iiqup of particle density is significant, as well as the value
simulation, this quantity fluctuates wildly, and hence, generof km_kmo as external inputs, and we chodsg— k,=4 for
ating a histogram to obtain the probability distributiBeAL) g nurposd3s] (we refer back to Table | for the definitions

from computer simulations proves to be difficult. Instead, we : _
compare the “cumulative probability distribution” curves of kmO’ etc). The calculation of the value 6, kmo and the

P(At), which is defined as the probability of a new foremostgeneration of theP(At) curve are carried out self-
bin creation happening at time=At. From a theoretical consistently and hence by iteration, using the recursive feed-
point of view, the expression d?(At) can be found easily Pack method33]. However, to generate tff(At) curve for

from Eq.(4.7) as any guess value dfm—kmo, one still needs to have the val-
. At ues of 5@ (t=0) for thek,,—k bins at the tip as a starting
p(At):f dt’ P(t’)zexp{—} dt(Ny (t))}- point [see Eq.(4.12]. At the same time, we notice that

At 0 m 6P (t=0) can only be determined once the probability dis-

(5.12  tribution P(At) is obtained. We choose to address this prob-

It turns out that theP(At) histogram generated from the lem th? following way: for any guess value m‘_kmo’ we
computer simulation results is not noticeably affected bystart with Eq.(4.13 and o¢y(t=0)=0 for the rest of the
fluctuations, which makes its comparison with tR¢At)  Km—Kp bins. Keepingk,—ky, fixed, we then generate the
curve generated from our theory much simpler. corresponding®(At) curve and obtain thé¢,(t=0) values
for the rest of thek,,—ky bins using Eq.(4.14. We keep
1. The case ofy=1 and N=10" repeating this process until we converge in terms of the
The P(At) curve from the computer simulations are gen- ¢ (t=0) values, i.e., when the recursive correction to the
erated in the following way: by definitioR(0)=1. ForN values of ¢, (t=0) becomes less than 10% of tlde),(t
=10* andh»)‘/:]_, there are 980 values dft. First, these are :0) values at the previous step in the recursion. Once this
arranged in an increasing order of magnitude,pointis reached for a value &f,—kp,, we then compare the

Aty,Aty, ... Atego, and then in the corresponding values theoretical cumulative probability distributioR(At) with
of P(At) are obtained as Fig. 6 above to decide upon the next guess valueof
1 —Km, in the recursive feedback method.
P(Atj 1) =P(At) - 980 (5.13 For N=10" andy=1, the value ok, —Kp, turns out to

be k,— km0= 1.1431. We present the corresponding theoret-

for j=2,3,...,980with the initial condition thatP(At;) ical cumulative probability curves in Fig. 6. The solid line in
=1-1/980. The corresponding(At) vs At plot is shown  Fig. 6 represents thiilly consistenisolution of Eqs.(4.5—
in Fig. 6 by open circles. (4.14), while the dashed line represents the theoretical cumu-
To generate the corresponding theoretical cumulativeéative probability curve obtained by solving Eq&.5—
probability distribution, we proceed in the following wdy.  (4.14) with ¢, (t=0)=0 for k#Kk,,. The fact that the fully
a coordinate system, where the functi¢f;P)(t=0)=0 at k  consistent solution curve matches the computer simulation
= ar/z; [which allows us to use the values Afz,, vy, and  one much better than the naive approximation where all the
z; of Eq. (B6)], we work out the whole machinery described 8¢, corrections behind the foremost bin are ignored is a
by Egs. (4.5—(4.14 neglecting the fluctuation effects de- strong indication of how significantly the buildup of particle
scribed inSec. IV C. This process requires the valuekgf  densities in the binbehind the foremost oradfects the prop-
—ky,, i.e., the number of bins at the tip of the front where theerty of P(At).
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. o FIG. 8. The combined theoretical curve and the simulation data
FIG. 7. The theoretical curve, which includes the effect of thefor the cumulative probability distribution®(At) vs At for N

va_cant foremg_st bir_1 eyen_ts, and the simulation data for the cumu- 1%, 10°, and 16, andy=1. The curves for the latter two are
lative pI’OEablhty distributionP(At) are presented above fou shifted upwards for clarity.
=10* andy=1.
Sec. IV, whileat At=t,, it is set equal to M manually. As

An examination of Fig. 6 immediately reveals that the@ consequence, the theoreti€At) curve in Fig. 7 has a
agreement between the(At) curve generated by the fully slope discontinuity at\t=t,.
consistent theory of Sec. IV and the computer simulation is In Fig. 7, the improved theoretical curve follows the curve
extremely accurate up to abaht=0.9. However, the theory reasonably well, but it still liedelow the simulation data
is unable to capture the “tail” of thd®(At) curve for large  points forAt=2/vy, as it should be. This discrepancy gives
At. Analysis of our data shows that this is due to the fluc-us an idea about the effect of the correlated diffusion events
tuation effects discussed in Sec. IV C. As mentioned thereon the P(At) curve that we could not estimate. Using Eq.
correlated diffusion events are not captured in this theory(5.7) to calculate the front speed from the theoretical curve in
However, we can follow the argument of Sec. IV C 2 to takeFig. 7, we obtain
into account the effect of the vacant foremost bin events on _
the P(At) curve for largeAt values: we assume that all vn(theoretical=1.988 82. (5.149
cases ofAt>ty~2/vy are due to the vacant foremost bin ) )
events. This means that fait<t,, the P(At) curve is given This is about 0.024 higher tha.n the asymptotic front.speed
by the solid line in Fig. 6, but front, onwards, theP(At) ~ Measured by the computer simulatipsee Eq.(5.8)], in
curve must be generated from the mean-field dynamics of th@greement with the fact that the theoretical curveR¢At)
tip described in Sec. IV, with the same valuekgf, but with slightly underestimates the simulation one for=2/v .
the initial condition(Ny_(t=to))=N,_(t=to)=1/N, as op- o
posed to(N;,_(t=0))=N;_(t=0)=1N. With the value of 2. The cases of #10%, 10°, and 10, with y=1

kq already determined in this subsection, the corresponding We now further test our theory fd = 107, 10°, and 16,
equations, Egs.(4.5—-(4.14), are easy to solve self- keeping the value ofy fixed at 1. The values of
consistently as before. From this analysis, we obtain the besy(simulation, z,, z;, andA in Table Il below. The corre-
havior of P(At) for At>t, having noticed thaP(At—ty,  spondingP(At) vs At graphs, which are the analogs of the
+) must be the same as the value obtained from the solidraph in Fig. 7, have been plotted together in Fig. 8. Table Il
line in Fig. 6 atAt=t,, i.e., 0.060 34. We present the final presents the theoretical valuesugf that are calculated using
theoreticalP(At) curve together with the simulation data in theseP(At) vs At graphs, and predictegy, from Eg. (3.6).

Fig. 7. Notice that this process introduces a finite disconti- Notice that asN decreases, according to Table II, the
nuity in the density of the particles inside the foremost bin value ofz, decreases more and more fromhts- limit z,

at At=tg, since forAt<tg, the density of theX particles in ~ while z increases. This is an illustration of how the non-
the foremost bin is obtained from a fully consistent theory ofmean-field effects become increasingly important behind the

TABLE II. The vy (simulation, z, , z;, A, vy (theoretical, andvy [Eq. (3.6)] values fory=1, andN
=107, 10, and 10. Thewv (theoretical values are calculated from the theoretical curves of Fig. 8.

N vy (simulation Z Z; A vy (theoretical vy [EQ. (3.6)]
10 1.778 0.8217 0.436 0.8836 1.808 1.465
10° 1.901 0.8586 0.3313 0.9042 1.899 1.803
10° 2.001 0.8885 0.2654 1.0714 2.057 1.976
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tip region. We should also note two more points about Fig. 8very large values oN, the actuaN dependence of the front
(i) in the absence of any estimate of the correlated diffusiorspeedv is a much more complicated story than simply the
events forAt=2/v,, the theoretical curves lie below the 1/In°N relaxation tov* of vy . From the trend of the gradual
simulation data(although forN=10? and 10, it is not so left shifting of k,,, (with respect tdk,) and the gradual unim-
clearly discerniblg and(ii) the agreement between the the- portance of the role 06N, (t=0) values compared to their
oreticalP(At) curve and the simulation one foi=10° may N, (t=0), it is conceivable that for extremely large values of
appear to be worse than the corresponding onesNor N, ky,— kg, and 6Ny (t=0)—0, and it is this limit where
=10, 10°, and 10, but this may be due to the fact that we the cutoff(at (= 1/N) picture in Ref.[9] becomes appli-

have had to continuously cut off particles from the saturatiorzaple. In this sense, the theory of Sec. IV is complementary

region of the front on the left to obtain the stochastic simu-g that of Ref[9], as together they span the whole rangélof
lation data fOI’N=105 within a reasonable Computer time. Va'ueS, from reasonab'y small to very |a|’ge_

We have found that the shape of tR€At) histogram ob-

tained fron_"n the simu[atiop gets.slightly modifjed dgpending E. The case ofy=0.1 andN=10"

on how this subtraction in carried out, specially in thé

=2y, region. We now investigate the claim made in Sec. IV that the
We now return to[the issue raised in poir6) of Sec. correlated diffusion events affect tig(At) curve so se-

IV D] the increased importance of the stalling effects and thaerely for low diffusion coefficients that our approach fails

deviations from theN— o asymptotic theory for decreasing badly, by comparing the theoretic®(At) curve with the

values ofN. Figure 9 shows the comparison between thesimulation one, fory=0.1 andN= 10".

actual particle numberg SN, )(t=0)=NdJ¢,(t=0) and the We present the two curves in Fig. 10. The asymptotic

(NOY(t=0)=Na?(t=0) values for four foremost bins, speed for the corresponding pulled front;,, for this set of

i.e., fork=ky, Km—1, Kmn_2, andk,_5 (note that for the parameter values is given oy =0.7754 and the simulation

sake of clarity, we have omitted the angular brackets foresults yieldvy=0.698.

notations in Fig. ® These values have been obtained self- The theoretical curve of Fig. 10 is analogous to that of

consistently, while generating the theoretical curves of FigsFig. 6 represented by the solid line, and it is obtained by

7 and 8. As expected, itis clear that th,(t=0) values are means of a fully consistent theory of Sec. IV. Notice that the

playing less and less role for increasing valuéloThere are  agreement between the theory and the computer simulation

couple of more points that one must take notice of. First, asesults is not good beyortit~1/v . It is also obvious that

can be seen from Table I increases withN, but only by a  an attempt to incorporate the effect of the vacant foremost

small amount. Second, it is also clear from Fig. 9 that withbin events does not do any improvements in this case, since

respect to thé,th bin [where(N(®) vanisheg the position the value ofP(At) is almost zero foAt=2/v\ . This is very

of the kyth bin (where(N(®+ §N)(t=0)=1) shifts gradu- much expected and a careful examination of the simulation

ally towards the left for increasindyl (see Table | for the data also reveals that the vacant foremost events do not occur

definition of k). All these together elucidate that for not at all during the front speed measurement times between
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FIG. 11. Values of vy(t;) for 200<t;<700 and |

=1,2,...,980. As expected, the fluctuationsiR(t;) die out for
FIG. 10. The cumulative probability distributioR(At) as a  |arge values of.

function of At for N=10* andy=0.1.

to Eq.(2.5), is slightly more complicated, and it is given by
=200 andt="700[see Eq(5.6) and the paragraph abova. it 5
Altogether, this fits very nicely in the consistent picture that ¢ _= n _
we have put forward so far, which simply indicates that the o1 Nxi(1) = YNy e 2 (D) + (N 2(0) = 2(Nx (1)) ]
entire discrepancy between the theory and the computer 1
simulation in Fig. 10 is solely due to the correlated diffusion + ZTUNU(EN (1)) — (N2 (t 6.1
smuet NLNKON (D) = (N (D)], (6.1

VI. THE CASE OF A FINITE NUMBER OF Y PARTICLES whereN,(t) is the total number of particles in theh bin at
ON THE LATTICE SITES time t. In Eq. (6.1), if we replace (N (t)Nx k(t)) by
) )  (NK(D)){Nx k(1)) =N(Nx (1)), then one retrieves E¢2.5).

We now briefly turn our attention to the following |, this section, therefore, our purpose is to investigate if the
rea_ctlon-dl_ff_u5|on proces_x+ Y—§2X on a Iatt_lce: at each qrrelation termN,(t)Ny (t)) has any bearing on the cor-
lattice position, there exists a bin. Once again, we label theactions of the asymptotic front speed over its corresponding
bins by_ their serial indi(_:ek, k=123... M . placed from  y3lue obtained from the model analyzed so far.
left Fo right. In thekth bin, there are a certain number Xf Front propagation in this model has been studied numeri-
particles, denoted by  and a certain number of par-  cally by Kessler and coauthofd0]. Our interest in this
ticles, denoted bNy . Both Ny, andNy y are finite. The  model is motivated by the following observation: in terms of
dynamics of the system is described by three basic processgge average number of particles in a bin, an appropriate

(i) Diffusion of the X particles in thekth bin to the k  reaction rate yields an equation, which is similar to Ex5).
—1)th or the k+ 1)th bin with a rate of diffusiony. If anX  However, the linear growth term of E2.5) is replaced by a
particle in bin 1 jumps towards the left, or atparticle in  more complicated correlation function between the number
the Mth bin jumps to the right, then they are immediately of X and Y particles in thekth bin. Nevertheless, near the
replaced. foremost bin of theX particles, the number of particles is

(i) Likewise, diffusion of theY particles in thekth binto  so large that the fluctuations in their number remains small.

the (k—1)th or the k+ 1)th bin with a rate of diffusiory. If ~ UPon neglecting these fluctuations, the linear growth term
anX particle in bin 1 jumps towards the left, or nparticle ~ for the X particles becomes the same as the one before, and

in the Mth bin jumps to the right, then they are immediately ©ne therefore expects the speed correction to stay unaffected.

replaced. Our purpose is to check this expectationmerically by
(iii) Reaction to produce aextra X particle having anni- comparing data for the front speed in this model with those
hilated aY particle (X+Y—2X), with a rate IN. given in Eq.(5.8) for Eq. (2.5). The algorithm that we use in

To study the phenomenon of front propagation for thisOur simulation is similar to that of Sec. V A. The valuedf
model, the initial configuration of the system is taken as'S taken to be 1500 and for the starting configuration of the
Ny =N[1— 0 (k—ko)] andNy ,=N® (k—ko) (a step func- ~ System, we us&,=>50. _ _
tion in the density of the particles. Because of the reaction ~ The asymptotic front speed is calculated using Eg)
processiii), the number ofX particles in any bin keeps and (5.7). The measurement of the front speed starts at
increasing, until the supply of particles in that bin runs out. =200 and stops &t=700. There are 98At values in this
As a result, the region that is full of particles slowly in- time interval. The corresponding(t;) vst; graph is shown
vades the region that is full of particles, and this constitutes below in Fig. 11. Using the same method of calculation as in
a propagating front. Sec. V A, the asymptotic front speed fbi=10* and y=1

The corresponding equation of the front that is analogousomes out of the computer simulation as
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vn=1.974+0.009. (6.2 The prospect of such a theory, however, looks grim at this
point. Not only the problem becomes highly nonlinear, but

We notice that the error bars of Eq$.8) and(6.2) overlap also one must realize that the fluctuations in the numbet of
with each other, and we conclude that the correlations beParticles in the bins near the tip is of the same order as the
tween the total number of particles and the numbetXof number ofX particles in them{-1), and there does not exist
particles in the bingthe (N(t)Ny ()} term in Eq.(6.)]  any small parameter that one can do perturbation theory

indeed do not affect the asymptotic front speed, as we haWith; . )
expected. Finally, we note here that we have confined our analysis

As noted before, Kesslat al.[10] claimed that the pref- 0 cases in which the growth and hopping terms for few
actor of the speed correction was about a factor 2 differenparticles per site or bin are the same as those for a finite
from the value expected from the asymptotic form(8a6) density of particles. In such cases the front speed converges
of Brunet and Derrida. Whether this is due to the valuel of t0v* asN—. One should keep in mind, though, that there
not being large enough, or due to their particular way ofare also cases where with minor modifications of the stochas-
implementing the stochastic simulations, is unclear to ustic rules for few particles, one can arrive at a situation in
From our data, there is no reason to believe that for latge Which the speed does not converge to the pulled sp&ess
there is an essential difference between the model with finitd—, even though in the mean-field limit one obtains a
number ofY particles and the earlier model with an infinite dynamical equation that admits pulled fronts. We have dis-
supply of Y particles, otherwise the asymptotic formula cussed this in more detail elsewh¢ay].
would be incorrect adl—oo.
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In this paper we have identified a large number of effect
that play a role in the tip region of fluctuating fronts which in
the mean-field limit reduce to pulled fronts. While a full
theory from first principles, which yields explicit predictions
for the front speed for finit&l will be hard to come by, we
believe that any such theory will incorporate most of the

effects we have analyzed and studied with computer simulaAPPENDIX A: SUMMARY OF THE DERIVATION OF THE
tions. One important conclusion from our studies is that GENERALIZED VELOCITY CORRECTION FORMULA

while the asymptotic largét correction derived by Brunet In this appendix, we derive the generalized velocity cor-

and Derrida is universgin the sense of being independent \qction formula, Eq(3.4), and its interpretation. Without any
of the details of the modgthe corrections to this expression |5¢g of generality, we can express the front soluti(g) for
do depend on many details of the model. In most case V<v* by (cf. Réfs.[9—11 16,17

deviations from the asymptotic results are significant for val-

ues ofN that can realistically be studied. H(&)=Asinz &+ Blexp —z,€) (A1)
The message of this paper is as follows: the bulk of a

fluctuating front can still be considered a uniformly translat-at the leading edge of the front, wheze=Re(z) and z

ing one and one can properly define a comoving coordinate=Im(z). The corresponding dispersion relation is then given

system, in which the shape of the bulk remains unchangedyy

on the other hand, the position of the tip of the front in such

a comoving coordinate system fluctuates, and only on aver- z,uny=27(coshz, cosz;—1)+1 and
age the tip becomes stationary in this comoving coordinate
system. From the mean-field limit of this fluctuating front, zvy=27 sinhz, sinz; . (A2)

we know that the tip region is very important for its dynam-

ics; as a result, the fluctuating tip plays a very significant roleThe additive phaseg in Eq. (3.3 can be scaled away by
in deciding the asymptotic front speed, in which two veryredefiningA and the position of the origin from wheggis
important aspects come to play a role—discrete nature oheasured. We therefore drgpin this appendix. Since the
particles and discrete nature of the bin indices. In this papegcaled particle density has to be positive, ig(£)=0, the
we have tried to formulate a theory to model this fluctuatingphysical linear solution regime must be confined within the
tip. This theory is still a mean-field type theory. More spe-range where € zé<. We now make a notational choice

cifically, att=0, the shape of the tip is always the sametg denote the comoving coordinate corresponding to the node
mean shape, and hence this theory is unable to capture thg the sine function in Eq(3.3), by £&.+1, i.e.,

correlated diffusion events or the vacant foremost bin events

(although we can estimate the effect of the Iattany alter- zi(é+ )= (A3)
native theory, that one might think at this point, must be able

to take into account these fluctuation effects, which, as pre©ne should understand at this point that although Eq. (A1)
viously explained, must be able to study multitime correla-suggests that there is a second node¢df), where the

tion functions for correlated jumps at the tip. argument of the sin function becomes zero, such a node does
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not exists. Much before the argument of shefunction be-  solution ofz from Eq.(A9) with z, replaced byz,, we then
comes zero, the nonlinear saturation term becomes impoifind that the asymptotic speeq, is given by Eq.(3.4).
tant and the solution (Al) for the linearized equation does
not hold any longerin this overly simplified mean-field de- APPENDIX B: DETERMINATION OF A
scription, &; plays the role of the comoving coordinate of the
foremost bin. The mean-field description of the front is then ~ Solving the full nonlinear difference-differential equation,
completed by claiming thai#(&)=0 for é=&.+1. Let us  Eq.(2.6), is not an easy task. For a given set of valuey of
also denote the density of thé particles in the “foremost and N, there are essentially two methods to determine the
bin,” which in this approximation is a£., by a/N, to have value ofA. The first one is to obtain the solution close to the
saturation valueb=1 and thereafter iterate the solution until
. _a one reacheg~0. Close to the saturation valug=1, one
Asinzigelexn—z&e) = - A can definen(£)=1- ¢(&), which reduces Eq(2.6) to an
equation iny(&), given by
Once the parametes and a are known, Eqs(A2)—(A4)
form a set of four equations for four unknowrss, z;, &, 7 -~ 5
and vy, which we can then solve numerically for the _UNd_§:7[77(§+1)+ 7(€E=1)=27(§)]—n(&)+ 7°(§).
asymptotic front speedy . (B1)
In order to put our results in a particular form that facili-
tates comparison with the earlier results in literati#k we  For  values close to zero, the solution of H§.7) is given
analyze Eqs(A2)—(A4) for large N. First, with the help of by the linearized equation
the Eqg.(A3), we reduce Eq(A4) to

d -
—de—Z=7[7I(§+1)+77(§—1)—277(§)]—7;(5),

, a

Asinz exp(—z &)= N (A5) (B2

Next, having introduced a new variable such that with the corresponding solutiony(£) =B exdz(¢—&)]-
nN Substitution of this solution in EqB2) yields the dispersion

n .
_ relation betweemw andz,
&c z T (AB)
—vnZ =2v[coshz —1]—1. (B3)

and using Eq(A3), Eq.(A5) is further reduced to an implicit
equation inu, One can then iterate this solution towar@ds=0. The full

solution of Eq.(B1) can be written as
Z = sin . (A7)

A
In—+1In
a

7z,
INN+1+pu ”

7(8)= 2, Brexinz(é—&)], (B4)
SinceN is large, one can solve this implicit equatipnby n=1
means of a simple successive approximation procedure. At . .
the lowest order, one can drop theterm in the denominator Where.the cor_respondm@n values are obtained from the
of the argument of the sine function in E@A\7) and obtain recursion relation

. T
SI———
INN+1

_ BiBn_1tBBy ot - +By_1By
1—nupz—2y(coshnz — 1)

(B5)

A
In §+ In . (A8) B,

1
S

r

Finally, z; can be obtained from Eq#A3), (A6), and(A8) as  As a starting point for constructing the solution nefse 1,
one can choose arbitrary valuesgfandB,, so long as the
(A9) value ofB; is sufficiently small. At small values d@;, any
scaling of B; amounts to a simple shift of the origi&,.
Finally, one can then match the solution, thus obtained, to the
form ¢(&) =Asinz({— &) lexdz(§—&)] nearg=0 and de-
By now, we have eliminated the unknowpand reduced the termine the value oA.
problem to solving three unknowng,, z;, andvy from The second method to obtain the numerical valué @
three equations, Eq§A2) and(A9). From Eq.(A9), one can to assume a certain value Afclose to¢=0 with the func-
see that for largé\, the approach of; to zero is extremely tional form ¢(&)=Asinz(é—§&)]lexdz(é—¢&)] and then
slow, going only as In!N and also the fact that for the strict continue to iterate the corresponding solution in the direction
limit of infinite N, zz=0, which reduces Eq(A2) to Eq. of ¢=1 in a similar manner. This time, if the assumed value
(3.2, as it should. For largé, therefore, one expects that of A is correct, then close té>=1, one must recover the
z,~7zy andz;<1, and one can expang, around its value exponential behavior o$(¢), as in Eq.(B4). However, we
for z=z,;. Upon expandingy aroundv*, and using the have found that the first method is stable under small

T2,

Zi~

| INN+z,+I A+| in —

n Z n— nsin ——
' a INnN+1
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changes in the starting value Bf, while the second method
is not stable under small changes in the assumed valde of
The first method should therefore be the natural choice,
albeit from a practical point of view, one needs a very large
number ofB,, values to extend the solution ¢f(¢) all the
way up to ¢=0. In practice, we have therefore used a _
“double shooting” method 39], in which the functions are A=0.961£0.012. (B6)
calculated from both Sides, and then matched somewhere mf course, the numerical value @fdepends on the Origin'
the middle. _ _where fromé is measured for the form in E¢3.3). In Eq.
The matching of the values of the functions and their(ge) above, the value o is determined with3=0, i.e., the
derivatives aip, requires the values o, z;, andz; to be  solution of the linearized equation at the leading edge of the
determined externally. Fop=1 andN=10% the values of front is zero at¢é=/z . We mention here that the uncer-

7,=0.4187+ 0.0008,
z,=0.877+0.002,

z;=0.264+0.007,

Z, Z;, z;, andA are numerically obtained from Eq&.8),
(A2), and(B3) as

tainty in these numbers is determined by the uncertainty in
vy, hot by the inaccuracy of the numerical method.
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theoreticalP(At) curve, compare it with th@(At) curve ob-
tained from the computer simulations, and use the nature of
discrepancy to make the next guess valu&ef This process

is repeated until one converges to the valu&gf for which

the best agreement between the theoretical and the simulation
P(At) curves is achieved. In this recursive feedback method,
specifically fory~1 andy<1, one should remember to com-
pare the theoretical and the simulati@{At) curves for O
<At=1/vy while obtaining the numerical value &f,, since
for At~2/vy, there are other complications that come to play
a very significant role. These effects are discussed in Sec.
IV C.

[34] In actuality, at the instant step) is over, the population of the

(k= 1)th bin has grown to a value bigger than 1. As a result,
the diffusion of anX particle from the k,,—1)th bin to the
kynth bin takes slightly smaller time than the time scale for a
new foremost bin creation dy,. A 1/vy time scale would be
applicable if the population of thek{,— 1)th bin is exactly 1 at
the instant steb) is over. We choose to ignore this, and by
choosing to do so, we overestimate the valuéydfy a small
amount.

[35] Of course, in an actual proceds,is determined probabilisti-
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[36] For large values oﬁ/, there can be another kind of event,

where the vacant foremost bin event takes place more than
once for the same foremost bin. This is more likely for large
values oﬂ/, since the hops from the foremost bin towards the
left is much more likely before the number Xfparticles gets

a chance to grow in the foremost bin. In that case, one can
simply extend this existing way of estimatingto to~4/vy,
to=~6ly, ..., etc.

[37] The sequence of random numbers generated by drand48 is

random enough for our purposes so long as weargdarge
enough (10P) initial seed. There is nothing special about
choosing 123 456, it is as arbitrarily chosen as any other initial
seed~ 10°. We have also run the simulations fd= 10" and

y=1 with two other random seeds, namefr=10° and s
=10". For both of these two cases, the average speeds calcu-
lated by means of Eq5.7) fell within the error bars of Eq.
(5.8). Thus, the chance of our results being affected by inher-
ent correlations of the random number generator provided in
the standard C library is ruled out.

[38] We have verified that &, , the front shape is still given by the

solution of the linear equation, E¢.6).

cally and not in such a sharp manner. However, we should39] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Veterling,

remember that this is only an estimate, and we will show later
that it works reasonably well.
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